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ABSTRACT 

We have developed a combined statistical-dynamical prediction scheme 

to predict the probability of tropical cyclone (TC) formation at daily, 2.5° 

horizontal resolution across the western North Pacific at intraseasonal lead 

times.  Through examination of previous research and our own analysis, we 

chose five variables to represent the favorability of the climate system to support 

tropical cyclogenesis.  These so-called large-scale environmental factors 

(LSEFs) include:  low-level relative vorticity, sea surface temperature, vertical 

wind shear, Coriolis, and upper-level divergence.  Logistic regression was 

employed to generate a statistical model representing the probability of TC 

formation at every grid point based on these LSEFs.  Thorough verification of 

zero-lead hindcasts reveals this model displays skill and potential value for risk 

adverse customers.  In particular, these hindcasts had a positive Brier skill score 

of 0.03 and a skillful relative operating characteristic skill score of 0.68.  The fully 

coupled, one-tier NCEP Climate Forecast System was used as the dynamical 

model with which to forecast the LSEFs and, in turn, force the regression model.  

A series of individual TC case studies were conducted to demonstrate the 

predictive potential, at intraseasonal leads, of our statistical-dynamical method.  

Lastly, we investigated the applicability of intraseasonal forecasts to military 

planning. 
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I. INTRODUCTION 

A. MOTIVATION 

Three months before the kickoff of the Valiant Shield (VS) naval exercise, 

a group of U. S. Navy planners gathers in a small conference room at Pearl 

Harbor to compare notes.  The meeting scrubs the logistics and rules of 

engagement for this large scale, joint forces event held in the tropical western 

North Pacific region near Guam.  Hours later, an environment-savvy planner 

questions, “is the weather going to cooperate?”  He continues, “How might 

tropical cyclones affect the ability of the different platforms to operate in the 

designated exercise area and period?” 

This meeting may be hypothetical, but those questions are exactly the 

type that military planners should be asking and that Department of Defense 

(DoD) weather centers should be capable of answering with confidence.  

Unfortunately, no suitable products currently exist to answer such questions.  

Such mission planning well in advance of the operation(s) is not unusual in the 

DoD.  Though this example depicts a complex exercise, the same environmental 

intelligence should be exploited for a multitude of missions, such as planning 

flight qualification training at long leads or establishing a CORONET trans-

oceanic air bridge.   

A gap clearly exists in DoD weather support for forecasts with lead times 

on the order of weeks to months.  Consider the potential benefit—in dollars, 

hours, morale, etc.—if weather forecasters were able to provide those planners 

with a regional outlook for tropical cyclone activity and an idea of avenues of safe 

passage through the western North Pacific.  This thesis will investigate one such 

approach that would benefit this scenario.   
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B. CLIMATE PREDICTION PROCESS 

1. Syntax and Definitions 

Below are definitions for and discussions of some key terms that are used 

in this paper. 

a. Climatology 

While climatology literally refers to the description and scientific 

study of climate (Glickman 2000), this term is used in this work to refer to a 

quantitative description of an element in terms of a long term average; for 

example, the frequency of cyclone formation for a given grid box in a region for a 

given unit of time.  Climatology is also used throughout this thesis as the baseline 

forecast against which our methods will be compared.  Appendix A includes a 

more in-depth discussion on the variations in the methods used to calculate 

climatologies. 

b. Intraseasonal 

Used in reference to a subset of forecast products and associated 

lead times, intraseasonal comprises a period bounded by a single season or 

other three month period.  Often referred to as long-range forecasting, 

subseasonal forecasting, or short-term climate prediction, the lead times for 

intraseasonal products and techniques are typically longer than two weeks, but 

less than three months. 

c. Prediction 

The word prediction is readily used interchangeably with a form of 

the word forecast.  Though such use may be grammatically correct, we use the 

word prediction to denote a quantitative scientific estimate of future climate 

conditions that has skill.  A forecast, in contrast, is used to refer to both the 

prediction process, regardless of perceived skill, and the deliverable that results. 
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The difference here between forecast and prediction may be more 

psychological than meteorological.  The customers for forecasts and predictions 

(e.g., military operators, the general public, etc.) expect that weather forecasts 

are readily available (e.g., a five-day forecast from the local news media).  In 

contrast, a description of the future state of the climate system may be best 

thought of as a prediction that is issued only if the prediction has some perceived 

skill beyond a baseline forecasts (e.g., a forecast of climatological conditions).  In 

that context, a customer should not always expect a prediction that varies from 

the long-term mean (LTM) for temperature over the forthcoming summer in the 

same way he expects a local forecast for tomorrow’s high temperature. 

d. Tropical Cyclone 

In the most general form, tropical cyclone refers to a closed, 

cyclonic circulation with its origins over a tropical ocean basin.  Tropical cyclones 

(TCs) are classified according to their intensity, and these classifications vary 

somewhat by ocean basin.  In the western North Pacific (WNP), a tropical 

depression is characterized by winds up to 17 ms-1, a tropical storm has winds of 

18 ms-1 to 32 ms-1, a typhoon has winds 33 ms-1 to 66 ms-1, and a super typhoon 

has winds that exceed 66 ms-1. 

2. Elements of Operational Climate Prediction 

The basis of this thesis is the exploratory development of a state-of-the-

science climate prediction system for likely TC formation areas in a given 

geographical region.  Though the idea of climate prediction—intraseasonal or 

otherwise—is not new, no available resources clearly outline the prediction 

process. 
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Figure 1.   Schematic of the climate prediction process. 

Figure 1 provides a schematic description of a state-of-the-science 

approach to developing an operational climate predictions.  As presented, this 

process is generic and may be applied to various meteorological or 

oceanographic elements and over various time scales.  The flow of the arrows in 

the diagram indicates that the process is fluid, and often iterative in nature.  

Though the process may vary somewhat in specific cases, the depicted steps are 

all important to the development of an operational deliverable. 

3. Methods of Prediction 

Though the Forecast Method Development step is only one step in the 

process depicted in Figure 1, the development of the forecast method is likely the 

most challenging component of the climate prediction process.  Three primary 

categories of predictive methods exist in operational intraseasonal/seasonal 

forecasting:  statistical, dynamical, and a combined statistical-dynamical 

approach. 
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a. Statistical 

Whether the approach is projecting average conditions, 

constructing analogues, or applying empirical orthogonal functions, statistical 

methods are widely used in climate prediction.  These and many other statistical, 

also referred to as empirical, methods use existing data sets in order to develop 

predictive methods based on past conditions.  Such methods are mainstays for 

intraseasonal and seasonal climate prediction at the National Weather Service’s 

Climate Prediction Center (CPC) and other climate prediction centers (van den 

Dool 2007).  

b. Dynamical 

Numerical weather prediction may be the standard for day-to-day 

weather forecasting, but dynamical methods in intraseasonal and seasonal 

climate prediction are often less skillful than comparable statistical methods.  Van 

den Dool (2007) cites that in 2005, the National Centers for Environmental 

Prediction (NCEP) presented an award to a group of its employees for 

developing the Climate Forecast System (CFS; to be discussed in Section II.B.4) 

that led to “the first time in history (in which) numerical seasonal predictions were 

on par with empirical methods.”   

The CFS belongs to a class of numerical models known as general 

circulation models (GCMs).  Many GCMs were built to focus on global climate 

issues; therefore, they struggle when applied regionally at intraseasonal time 

scales.  Coarse resolution, limited parameterizations, and systematic model 

errors all translate into limited operational use of many of the GCMs.  However, 

one advantage of a GCM vice a purely statistical method is the ability of the 

numerical model to explicitly account for nonlinear processes (van den Dool 

2007).  The reader is directed to van den Dool (2007) for an informative 

discussion of the relative performance of GCMs compared to empirical methods. 
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c. Combined 

The wide use of statistical techniques in short-term climate 

prediction leads one to the question whether there is any benefit to using a GCM 

or combined statistical-dynamical approach, or whether a pure statistical forecast 

would perform just as well.  A combined methodology is potentially superior, 

since such an approach has the ability to incorporate the advantages of each 

approach.  The method used in this thesis entails the use of a GCM to develop a 

prediction of the large sale environmental factors (LSEFs) that affect TC 

formations, and then uses these LSEFs to force a statistical model that has been 

trained over many years of TC and LSEF data to predict the probability of TC 

formation based on the GCM predictions of the LSEFs. 

C. EXISTING PRODUCTS 

1. Seasonal 

Seasonal predictions of TC activity forecast the overall character for an 

entire TC season within an entire basin (e.g., the total number of TCs in a WNP 

TC season).  The lead times for seasonal predictions are approximately zero to 

six months.  Among the earliest seasonal tropical cyclone predictions were those 

produced at Colorado State University in the 1980s for the Atlantic basin.  

Prediction techniques have continued to develop and expand since these early 

forecasts, and now include other ocean basins (Camargo 2006).  Though 

seasonal prediction is not the focus of this thesis, these existing products are 

briefly mentioned here as they provide much of the framework from which the 

newer intraseasonal products are derived.  Seasonal TC forecast products for 

the WNP are generated at various centers using statistical and dynamical 

methods.  The following listing of centers and products is by no means all-

inclusive, but provides a glimpse into the spectrum of participants and 

approaches. 
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a. Statistical 

The City University of Hong Kong has issued seasonal forecasts for 

the number of storms in the WNP basin since 1997.  They use several 

environmental conditions, the most prominent of which are El Niño and the 

Pacific subtropical ridge, in order to forecast the number of TCs (Chan et al. 

2001).  Tropical Storm Risk, a consortium out of the United Kingdom, also issues 

statistical forecasts for TC activity in the WNP.  In addition, they generate a 

forecast of the NW Pacific accumulated cyclone energy (ACE) index, based in 

large part on conditions in the Niño 3.75 region (Lloyd-Hughes et al. 2004). 

b. Dynamical 

The European Centre for Medium-range Weather Forecasts 

(ECMWF) issues seasonal forecasts of TC activity based on coupled ocean-

atmosphere models (Vitart and Stockdale 2001).  The International Research 

Institute for Climate and Society (IRI) also generates seasonal forecasts of TC 

frequency, but uses a “two-tier” approach.  The first step, or tier, entails 

employing various statistical and dynamical models to forecast future sea surface 

temperature (SST) conditions.  Then, the predicted SSTs are used to force 

numerical atmospheric models.  Detection algorithms are then used to identify 

TC-like features from amidst the coarse-resolution output fields (Camargo and 

Zebiak 2002).  

2. Intraseasonal 

Intraseasonal predictions of TC activity forecast the activity for 

intraseasonal periods (e.g., two weeks to two months) within an ocean basin.  TC 

prediction at intraseasonal time scales is a comparatively new area of research, 

which may be attributed to increasing model resolution, improving ensemble 

techniques, and continuing research into intraseasonal climate oscillations.  

Many of the centers noted in the seasonal section are active in the intraseasonal 

realm as well. 
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a. Non-DoD Products 

On the intraseasonal time scale, the Madden-Julian oscillation 

(MJO) presents the greatest predictive potential for empirical approaches.  Useful 

predictive skill for statistical methods are on the order of 15 to 20 days, limited by 

the signal-to-noise ratio of the MJO (Camargo 2006).  Frank and Roundy (2006) 

look beyond MJO alone and generate daily probabilities of formation using a 

wide variety of wave modes and climate signals.  More recently, Leroy and 

Wheeler (2008) used logistic regression in a purely statistical prediction scheme 

to predict the probability of TC formation in fixed zones of the Southern 

Hemisphere.  Their predictors include one representing a smoothed 

climatological cycle, two representing the propagation of MJO, and two 

representing the leading patterns of SST variability. 

Despite the promise of the budding statistical methods, Camargo 

(2006) contends that “while there is much room for improvement in the skill and 

application of empirical/statistical methods of intra-seasonal TC prediction, the 

greatest hope for improvement lies with dynamical/numerical models.”  One of 

the most promising players in the dynamical field is the ECMWF and their 

Ensemble Prediction System (EPS). 

Only a few centers create subseasonal forecasts, even fewer do so 

operationally and make the forecasts available freely online.  The CPC is among 

this select group, with its operational Global Tropics Benefits/Hazards 

Assessment product. 
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Figure 2.   Example CPC Global Tropics Benefits/Hazards Assessment, 
issued by CPC/NCEP on 6 August 2007 and valid 14-20 August 2007 

(From http://www.cpc.noaa.gov/products/precip/CWlink/ghazards/; 
accessed 12 January 2009). 

Figure 2 is an example of the Global Tropics Benefits/Hazards 

Assessment issued by CPC.  This product has both the graphical depiction (as 

shown in Figure 2), as well as accompanying text that explains the assessment.  

The description for the highlighted area in the WNP labeled region “4” states 

(From http://www.cpc.noaa.gov/products/precip/CWlink/ghazards/; accessed 12 

January 2009): 

The potential for tropical cyclone development northeast of the 
Philippines and in the South China Sea.  Active convection is 
expected in this area and with areas of anticipated weak vertical 
wind shear and above average SSTs the prospects for tropical 
cyclogenesis are increased.  Confidence: Moderate.  

Though this product makes strides with providing outlooks for 

impacts on TC activity due to the forecasted state of the tropical climate system, 

this product is limited by its subjective combination of forecast tools.  Plans for 

this product include making it more objective in nature (Gottschalck et al. 2008). 
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b. DoD Products 

As of this writing, no DoD centers are actively issuing forecasts at 

seasonal or intraseasonal leads for the tropics.  The Joint Typhoon Warning 

Center (JTWC) is the DoD agency responsible for issuing tropical cyclone 

warnings for the Indian and Pacific Oceans.  Products produced by JTWC are 

intended for use in decision making by operational military units, though most of 

these products are nowcasts and/or short-term forecasts.  

The Fleet Numerical Meteorological and Oceanographic 

Detachment – Asheville (FNMOD) is another logical place for operators/planners 

to turn for information regarding future tropical activity.  FNMOD does maintain a 

Mariners’ Worldwide Climate Guide to Tropical Storms at Sea, which appears to 

be a form of climatology for each basin broken down into 10-15 day periods 

(depending on the time of year).  This guide is certainly better than having 

nothing at all, but contains no information about the current or forecasted state of 

the climate system. 

Collocated with FNMOD, is the Air Force’s 14th Weather Squadron 

(14WS; formerly known as the Air Force Combat Climatology Center (AFCCC)).  

While the 14WS recently began issuing long-range forecasts for select locations 

(i.e., Iraq, Afghanistan), no products concerning the current or forecasted state of 

the tropical climate system in general, or TCs in particular, are available. 

D. RESEARCH MOTIVATION AND SCOPE 

1. Prior Work 

The idea for taking a combined statistical-dynamical approach for 

predicting likely cyclogenetic regions in the tropics evolved from thesis work by 

Meyer (2007).  Though his study did not venture into the realm of forecasting, 

Meyer used logistic regression to calculate the probability of TC formation in 

weekly five-degree latitude by five-degree longitude grid blocks as a way of 

quantifying the impacts of changes in the large-scale environment on the 

likelihood of TC formation. 
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Figure 3.   Example figure generated using methods from Meyer (2007), 
contoured are the zero-lead hindcast probabilities of TC formation for 

week 26 of 2006, and the contours are at 0.01, 0.25, 0.40, and 0.55.  The 
red dot represents a verifying TC formation location. 

Figure 3 is an example plot after Meyer’s work.  Such plots resulted in a 

perceived forecast potential and a methodological basis for this thesis work. 

2. Research Questions 

This thesis is an exploration into the viability of the prescribed 

methodology as a predictive tool at intraseasonal time scales.  While many sub-

questions exist, this work will primarily focus on investigating the following two 

questions: 

1) Can favorable regions for tropical cyclogenesis be predicted at 

intraseasonal lead times, by way of forcing a statistical model with available 

output from a GCM? 

2) Does a combined statistical-dynamical approach appear to result in 

skill and value beyond that which basic climatology provides? 
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As one can deduce from the preceding questions, this work will 

concentrate on methodology and stand as a “proof of concept.”  This thesis is not  

an attempt to advance the science of tropical dynamics; however, it may 

indirectly contribute to an improved understanding of, and ability to model, the 

large scale environmental factors that affect TC activity.   

3. Thesis Organization 

In order to answer the two aforementioned research questions, this work 

will focus on the following steps of the climate prediction process (see Figure 1):  

Data Selection, Climate System Analysis, Forecast Model Development, 

Hindcast/Forecast, and Verification/Evaluation.   

Chapter II begins by defining the study region and time period, and then 

provides a brief look at the numerous data sets used in this study, as well as the 

methods used in developing and testing our predictive model.  Also included in 

Chapter II is a summary of the large-scale variables thought to impact TC 

formation.  Chapter III outlines the results of the model development and 

hindcasting; in addition, Chapter III demonstrates the predictive potential of the 

model by way of a pair of case studies.  Chapter IV provides a summary of our 

results and conclusions, and offers suggestions for future research. 

To make this thesis purposefully concise, several topics are only 

mentioned briefly in the text but covered more at length in the appendices.  The 

following topics are appended to this work as references for the reader: 

climatology development and selection (Appendix A), calculation of variables 

from available output fields (Appendix B), and plots from additional case studies 

(Appendix C).  
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II. DATA AND METHODS 

A. STUDY REGION 

The western North Pacific (WNP) was chosen as the focus region for this 

study.  Our analyses of JTWC best track TC data from 1970-2007 indicate that 

an average of 30 TCs—tropical depressions through super typhoons—form per 

year, with a standard deviation of 4.8 storms.  With that, the WNP has the 

highest average number of TCs annually of all basins, and accounts for nearly 

30% of global annual total TCs (Chan 2004).  The WNP is also the only ocean 

basin wherein TC formation is observed throughout the year, although the 

majority of cyclones develop between June and November (Frank 1987).  This 

study region was also chosen for its economic and military importance. 

 

Figure 4.   Depiction of the WNP study region (outlined by the blue box) and 
TC formation points (red dots), constructed from JTWC WNP best track 

data from years 1970-2007. 

The study region extends from 100°E to 190°E (170°W) and from the 

Equator to 30°N, as depicted in Figure 4.  No literature standard exists for 

defining the WNP basin; however, the bounds for our study region differ no more 

than 10° in any one direction from the majority of other sources.  One reason that 
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our bounds differ slightly from other studies that deal with the WNP, is that in 

focusing on the genesis locations there is no need to allow for the recurvature of 

TCs post-formation.  Defining restrictive bounds also minimize the potential 

impacts of data dilution in our statistical verification.   

 

Figure 5.   Number of TC formations versus day of year, constructed with 
JTWC WNP best track data from years 1970-2007. 

As noted earlier, TC formations are observed throughout the year in the 

WNP.  Figure 5 displays the variation in the number of TC formations in the WNP 

during the period for a given Julian day.  This figure also highlights the unequal 

distribution of formations over the course of the year.  If one defines the peak 

formation period as June through November (as in Frank 1987), those months 

account for 936 of the 1122, or 83%, of the TCs; in contrast, a peak formation 

period of July through October (as in Sobel and Camargo 2005) accounts for 761 

of the 1122, or 68%, of TC formations.  Hereafter in this study the peak formation 

season will be defined as a period encompassing the months June through 

November. 
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Just as the temporal distribution of TC formations is not uniform 

throughout the year, the distribution varies spatially over the extent of the study 

region.  Figure 6 highlights the spatial variability from grid point to grid point. 

 

Figure 6.   Contoured probability of TC formation, constructed from binned 
JTWC best track data from the years 1970 - 2007.  Values represent the 

probability that a TC will form per year in a given grid box. 

Figure 6 shows what we term the “Raw 2.5 Degree Formation 

Climatology” that was constructed by summing the number of TC formations in 

the JTWC best track data for 1970-2007 within 2.5° latitude/longitude grid boxes, 

and then dividing the total per box by the number of years.  The result is a map of 

the climatological, or long term mean, probability of TC formation during January-

December.  The probabilities are based on TC formation over the course of the 

entire year, so the contour values are not overly useful to most decision makers.  

See Appendix A for further discussion on TC formation climatology.   

In this study, we attempted to develop and test a statistical-dynamical 

method for forecasting TC formation probabilities that is more skillful than the 

forecasts that could be obtained by simply using climatological TC formation 

probabilities (e.g., those shown in Figure 6 and discussed in Appendix A).  For 

such a method to be more skillful than climatology, it needs to be skillful at 

representing climate anomalies in the large-scale environment that affect TC 

formations.  Thus, it is useful to review the general conditions that influence TC 

formations in the WNP during the peak formation season.  Figure 7 shows the 
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main low-level circulation features that characterize summer Conditions in the 

WNP.  Note in this figure the band of convergent and cyclonic flow marked by the 

dashed line.  This band is often labeled the monsoon trough (Ramage 1995), so 

named because of its association with summertime monsoonal flow in the region.   

 

Figure 7.   Schematic depiction of summertime low-level flow over the WNP.  
The dashed line marks the monsoon trough and the zig-zag line indicates 

the mean ridge axis (From: Figure 1 (a) Lander 1996). 

The monsoon trough is associated with the development of most TCs in 

the WNP (Xue and Neuman 1984), due to the predominantly favorable 

environmental factors (as described in Section II.C.).  This is also indicated by 

the co-location of the high probabilities in Figure 6 and the climatological position 

of the monsoon trough in Figure 7.  The position of the monsoon trough 

experiences normal seasonal variations through the year, as well as spatial and 

temporal deviations from its normal seasonal cycle.  One example of a significant 

deviation is labeled a reverse-oriented monsoon trough, when the convergence 

zone extends from southwest (SW) to northeast (NE) over the WNP (Chu 2004). 

B. DATA SETS AND SOURCES 

The structure, format, and availability of the primary data sets used in this 

thesis are described in this section.  The inquisitive reader is directed to the cited 
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references for more information on each of these data sources.  All of the data 

used in this thesis are freely and publically available online. 

1. JTWC Best Track 

The JTWC maintains an archive of tropical cyclone data for the WNP.  At 

a minimum, these “best track” files contain the latitude and longitude of the TC 

center location at six-hour intervals.  These data are used for both model 

construction and verification in this study. 

The best track archive includes all TCs identified by the JTWC, and even 

includes a number of storms that were determined to be of sufficient strength for 

classification as TCs well after the storms occurred.  The aforementioned TC 

numbers in Section II.A. are higher than those in some prior studies that 

analyzed only storms that were of tropical storm intensity or greater. 

The JTWC data set is not without controversy.  Several researchers have 

noted that variations in analysis procedures, as well as changes in observational 

tools (satellite, aircraft, etc.) over the years, may compromise the overall 

consistency of the best-track [as written can be confusing] records.  Furthermore, 

Wu et al. (2006) cite notable differences in the track information from JTWC vice 

what is available from the Regional Specialized Meteorological Centre Tokyo; 

among the reasons for the discrepancies are differences in the time period over 

which winds were averaged, and differences in each center’s intensity-estimation 

techniques.  However, efforts have been made, and are continuing, to minimize 

the discrepancies within the JTWC best track archive and between the JTWC 

archive and other sources for historical TC information (Chu et al. 2002).  We 

determined that the potential problems with the JTWC best track data were not 

likely to significantly influence our study results. 

2. NCEP Reanalyses 

Global objective analyses that assimilate numerous observational data 

sources with model output and span many years provide an increased ability to 
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investigate the physical processes that surround TC development.  Prior to the 

introduction of these so-called reanalyses, it was difficult to consistently 

investigate subtle variations in the climate system.  We used two reanalysis data 

sets: (1) the NCEP/National Center for Atmospheric Research (NCAR) 

Reanalysis Projects (Kalnay et al. 1996; Kistler et al. 2001); and (2) the 

NCEP/Department of Energy (DOE) Atmospheric Model Intercomparison 

Project–II (AMIP–II) Reanalysis (Kanamitsu et al. 2002). 

The NCEP/NCAR Reanalysis Projects data set (hereafter referred to as 

R1), and the NCEP/DOE AMIP–II Reanalysis data set (hereafter referred to as 

R2) are both based on assimilating data using a fixed model at T62L28 

resolution.  Though both reanalyses use the same raw observational data, the 

R2 project attempts to correct some of the known errors in the R1 reanalysis; 

please review the cited publications for more details. 

Though other variables were tested, the final atmospheric variables used 

in the construction of our regression model (see Section III.A.) are all manually 

derived from “A” variables.  Kalnay et al. (1996) note that an “A indicates that the 

analysis variable is strongly influenced by observed data and, hence, it is in the 

most reliable class.” 

For the purposes of this study, we used daily mean fields interpolated to a 

2.5° global grid.  R2 was the primary dataset from which variables were derived, 

but R1 data was used in this research for verification and as a way to test the 

model’s sensitivity to a specific reanalysis system. 

3. NOAA OISST 

Just as the atmospheric reanalyses are invaluable tools in developing 

empirical prediction methods, so too is a quality database of SSTs.  The SST 

data used in developing our statistical model is the National Oceanic and 

Atmospheric Administration (NOAA) optimum interpolation (OI) SST analysis 

version 2.  SST values from this dataset are available in weekly means from 

1981 to present, at one degree latitude by one degree longitude horizontal 
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resolution on a global grid.  OISST data combine in situ and satellite-derived SST 

measurements with biases adjustments (Reynolds et al. 2002). 

In order to match our R1 and R2 data, the OISST fields were extrapolated 

from one degree resolution to 2.5° horizontal resolution and interpolated to daily 

values. 

4. NCEP CFS 

The NCEP Climate Forecast System (CFS) is a one-tier fully coupled 

ocean-land-atmosphere dynamical assimilation and prediction system, which has 

been operational at NCEP since August 2004 (Saha et al. 2006). The 

atmospheric component of this coupled system is a reduced-resolution version of 

the more-familiar 2003 operational NCEP Global Forecast System (GFS), with 

T62L64 resolution (equivalent to ~200 km Gaussian grid); the initial conditions 

are obtained from the operational R2 (Saha 2008).  This atmospheric component 

is coupled once per day, without flux correction, with the Geophysical Fluid 

Dynamics Laboratory (GFDL) Modular Ocean Model version 3 (MOM3).  Four 

CFS runs are executed daily, with integrations out to nine months.  Of the two 

runs initialized at 00Z and at 12Z, each has the same initial oceanic state, but a 

slightly perturbed atmospheric state.  The initial conditions for these runs are one 

day old for both the atmospheric and oceanic variables (Saha 2008). 

One appealing feature of the CFS is the availability of hindcast and bias 

correction fields.  As noted in Section I.B.3.b., GCMs are often plagued by 

systematic errors.  We are able to remove much of this systematic error, namely 

climate drift, by employing the forecast climatology that is available for all 

forecast lead times and the daily observed climatology.  Such corrective fields 

are only available for a subset of variables. 

From the available fields, in gridded binary format, we manually extracted 

daily SSTs at one-degree global coverage, daily atmospheric variables converted 

from their native Gaussian grid to a 2.5° latitude/longitude grid, and the 

appropriate bias correction fields.  Once the variables were bias corrected and on 
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the same latitude/longitude grid, we used the SSTs and atmospheric variables to 

force a statistical model to provide a probability of TC formation at every grid 

point.  

With numerous GCMs being used in climate science, one may wonder 

why we chose the CFS.  In addition to being freely and publically available, the 

CFS is the first operational, dynamical model with predictive skill on par with 

statistical methods used at CPC (Saha et al. 2006).  Saha et al. (2006) also 

notes that the “Niño-3.4 SST is probably the single most predictable entity [within 

the CFS].”  Though the Niño-3.4 region is just outside of our WNP study region, 

we were motivated by the relative high skill of the CFS in the Pacific basin, 

especially since prior studies have shown that SST variability in the Niño-3.4 

region is closely related to variations in the large scale environmental factors that 

influence TC formations in the WNP (Ford 2000; Chan 2004).  In addition to the 

perceived skill, the CFS also offers a rudimentary ensemble construct.  With two 

runs executed twice daily, the potential exists for a four-run ensemble with 

perturbed initial conditions.  One could increase the number of ensemble 

members by incorporating runs from other days as well.  The intention for the 

ensemble approach is to smooth out the differences between the runs in order to 

bring out the more predictable elements and, thereby, lead to enhanced 

predictive skill on average. 

C. VARIABLES OF INTEREST 

The existence of a set of large-scale environmental factors (LSEFs) that 

are influential in TC formation has been well documented over the last half 

century.  Gray (1968, 1975, 1979) outlined a physical climatology of tropical 

cyclogenesis relative to six, so-called genesis parameters.  Other authors vary 

the list of these parameters, or factors, slightly and at times condense the list 

(e.g., low-level relative vorticity and the Coriolis parameter may be combined into 

a single absolute vorticity term).  Regardless of the specific list of LSEFs one 

chooses, the physical properties are arguably quite similar.   
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The LSEFs may each be necessary for tropical cyclogenesis, but a 

combination of these parameters alone may not be sufficient to diagnose or 

predict the transition from a convective disturbance into an organized TC (Frank 

1987).  This idea of “necessary but not sufficient” suggests that the large-scale 

environment may not be solely responsible for determining whether a TC forms 

or not.  Frank (2006) contends that “individual storms form infrequently and 

sporadically within large areas of favorable environmental conditions due to the 

effects of local flow perturbations.”  Such a mesoscale trigger and/or perturbation 

in the local flow may be required to instigate tropical cyclogenesis, but abundant 

research supports the profound role of large-scale external forcing as a 

determining factor in tropical cyclogenesis (Briegel and Frank 1997).  

An underlying goal of this study is to predict favorable regions for tropical 

cyclogenesis at intraseasonal lead times, by way of forcing a statistical model 

with available output from a GCM.  In our case, we use the NCEP CFS as our 

dynamical GCM, from which not all the LSEFs are available.  To remedy this, we 

had to accomplish two tasks.  First, we had to consider other parameters that are 

similar to the LSEFs described in the literature and may represent the same 

processes, and for which intraseasonal forecasts are readily available from the 

CFS.  Second, we had to calculate additional variables based on available model 

output fields.  For variables requiring spatial derivatives, we employed second 

order centered finite differencing; see Appendix B for more information regarding 

the calculation of additional variables from available fields. 

The genesis parameters, as proposed by Gray (1975), can be subdivided 

into thermodynamic and dynamic parameters.  What follows is a brief look at 

these parameters, as well as some of the additional variables we considered.  

For the sake of brevity, not all of the variables that we investigated in our 

research are presented here.  For more information on LSEFs and how they 

relate to TC development, the reader is directed to any of the plethora of articles 

and books on the subject (e.g., Gray 1975; Frank 1987). 
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1. Thermodynamic Parameters 

Research suggests that sufficiently high SSTs and moisture in the mid-

troposphere are important for only for TC formation, but also for tropical deep 

convection.  These thermodynamic variables are often favorable for TC 

development over much of the tropical Pacific during much of the year (see 

Chapter III). 

a. Sea Surface Temperatures 

Frank (1987) contends that the high frequency of TC formation in 

the WNP, as compared to other ocean basins, is due, in part, to an expansive 

area of warm water (e.g., water warmer than 26oC).   

 

Figure 8.   Average June – November SST (in °C) conditions over the WNP for 
the period 1982–2000, plotted from NOAA OISST data interpolated to 2.5° 

horizontal resolution.   

Figure 8 depicts the average SST conditions over the WNP during 

the peak formation season.  Such a large expanse of warm water has led some 

researchers to conclude that SSTs may not be a primary factor affecting 

formation in the tropical Pacific (Chan 2004), as the temperatures are often 

sufficiently warm (e.g., greater than 26oC).   
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Figure 9.   Box plots of grid values of SST (in °C) grouped according to 
whether a TC formed in that day-grid box (indicated by Yes on the 

horizontal axis) or did not form in that box (indicated by No).  The box 
height encompasses 50% of the SST data points, the whiskers (dashed 
lines) extend to include ~99% of the SST data points, and SST data that 
fell outside the whiskers (outliers) are indicated by the red “+” symbols.  

Constructed from NOAA OISST data with TC occurrences from the JTWC 
best track archive for the January–December period of 1982–2006. 

The Box plots in Figure 9 separate the SSTs at 2.5° latitude x 2.5° 

longitude by day grid blocks according to whether a TC formed in the grid block 

(“Yes”) or not (“No”).  The comparatively constrained appearance of the “Yes” 

boxplot indicates that TCs seem to form in conjunction with a small range of 

SSTs in the upper 20s and low 30s degrees Celsius.  Numerous sources, such 

as Frank (2006) and Meyer (2007), note that SSTs must meet or exceed 26.5°C 

to favorably support TC formation.  These Box plots support that, and suggest 

that a threshold for the WNP may be even more restrictive (i.e., ≥ 28°C).  

Physical reasoning and the sort of relationships shown in Figure 9 indicate that  
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SST and TC formation probability at a given location should be directly and 

positively related to each other, if all other factors that influence TC formation are 

favorable and held constant. 

b. Humidity 

Early research on the climatologies of WNP TCs indicates that TCs 

only form in regions where seasonally averaged values of mid-tropospheric 

moisture are high.  The physical explanation is that moist air in the middle 

troposphere is more conducive to deep convection and vertical coupling of the 

atmosphere (Gray 1975). 

 

Figure 10.   Average June – November a) 500mb relative humidity (in %) and b) 
precipitable water (in kg m-2) conditions over the WNP for the period 

1971–2000, plotted from R1 data. 

Mid-tropospheric humidity variables are not available from the CFS.  

So we looked to precipitable water as a viable alternative to represent the 
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available environmental moisture.  Figure 10 shows average conditions during 

the peak formation period of mid-level relative humidity and total-column 

precipitable water.  Though the units are not directly comparable, one should 

note the spatial agreement of the location of high humidities to the location of 

greatest precipitable water.  As with SST, physical reasoning indicates that, all 

other factors being favorable and constant, an increase in atmospheric moisture 

content should lead to an increase in the probability of TC formation.  We 

confirmed this with moisture-TC formation Box plots (not shown) similar to those 

in Figure 9. 

2. Dynamic Parameters 

As noted earlier, favorable thermodynamic conditions are often present 

over expansive swaths of the WNP much of the year; therefore, dynamic 

parameters are thought to be responsible for determining whether a TC will form 

in a region that is thermodynamically favorable for TC formation.  Gray (1975) 

noted the comparatively small spatial and temporal scales over which a 

disturbance will interact with its surrounding dynamic environment.  These subtle 

interactions at smaller scales provide the motivation to use data at 2.5° resolution 

and daily time steps for this study, versus the previous work by Meyer (2007) that 

used 5° data at weekly time steps. 

a. Shear 

Numerous studies have found that large values of vertical wind 

shear in the large-scale environment tend to suppress TC formations.  Though 

various definitions exist in literature, the most common measure of vertical wind 

shear is the mean vector wind at 850 mb subtracted from the mean vector wind 

at 200 mb.  Such a calculation results in a magnitude and direction, though the 

magnitude alone is used in this work.  Near the monsoon trough axis, vertical 

wind shear is minimal, allowing deep convection to be sustained and increasing 

the likelihood of TC formation in the region (Chan 2004).   
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Figure 11.   Average June – November magnitude of vertical wind shear (in m 
s-1) over the WNP for the period 1971–2000, derived from R1 data. 

Figure 11 displays the mean magnitude of vertical wind shear over 

the WNP during the peak formation season.  The reader should note the co-

location of the low mean shear pattern (Figure 11), the climatological monsoon 

trough (Figure 7), and the highest climatological probabilities of formation (Figure 

6).  The Box plots in Figure 12 solidify the relationship between the magnitude of 

vertical wind shear and probability of TC formation—TCs form in regions of low 

environmental wind shear. 
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Figure 12.   Box plots of grid values of the magnitude of the mean vertical wind 
shear (in m s-1) grouped according to whether a TC formed in that day-grid 
box.  The box height encompasses 50% of the data points, the whiskers 
(dashed lines) extend to include ~99% of the data points, and points that 
fall outside the whiskers (outliers) are indicated by the red “+” symbols.  

Constructed from R2 data with TC occurrences from the JTWC best track 
archive for the January–December period of 1982–2006. 

b. Upward Vertical Motion/Velocity 

During the peak formation season in the WNP, warm waters lie just 

to the west of the tropical upper tropospheric trough (TUTT) and near the 

entrance region of the climatological tropical easterly jet.  Both features 

contribute to regions of upper-level divergence and/or persistent upward vertical 

motion, both shown to be favorable for cyclogenesis (Frank 1987). 
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Figure 13.   Average June – November a) 500mb omega (in Pa s-1) and b) 
200mb divergence (in s-1) conditions over the WNP for the period 1971–

2000, derived from R1 data. 

Just as with the moisture variables, the availability of variables from 

the CFS influenced our choice of the variables to use to represent vertical motion 

in our statistical model.  A variable directly representing vertical motion is not 

readily available from the CFS at daily time steps, thus we opted to test 200 mb 

divergence (calculated from the 200 mb zonal and meridional wind fields; see 

Appendix B for more information regarding these calculations).  Figure 13 depicts 

the peak season averages of 500 mb omega and 200 mb divergence. 
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Figure 14.   Normalized January–December 500 mb omega vs. 200 mb 
divergence scatter plot, displaying sensitivity between the variables, 

constructed from R2 data for the period 1982–2006. 

Though the spatial patterns in Figure 13 suggest that upper-level 

divergence may be a suitable alternative to the more-traditional omega, we 

sought to test the sensitivity of these two variables.  Figure 14 is a scatter plot of 

normalized divergence versus omega.  Knowing the opposing sign conventions, 

the negative slope to the elongated cluster suggests that the variables are 

reasonably correlated, and that divergence may be a suitable replacement for 

omega.  The box plots in Figure 15 indicate that TCs form in the WNP when 200 

mb divergence is weak, but skewed towards divergent outflow aloft. 
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Figure 15.   Box plots of grid values of upper-level divergence (in s-1) grouped 
according to whether a TC formed in that day-grid box.  The box height 

encompasses 50% of the data points, the whiskers (dashed lines) extend 
to include ~99% of the data points, and points that fall outside the 

whiskers (outliers) are indicated by the red “+” symbols.  Constructed from 
R2 data with TC occurrences from the JTWC best track archive for the 

January–December period of 1982–2006. 

c. Vorticity 

The final genesis parameter is vorticity in the lower troposphere.  

As their behavior is different, we chose to investigate relative vorticity and 

planetary vorticity—as represented by the Coriolis parameter f—separately, as 

well as combined into a single low-level absolute vorticity term.  Frank (1987) 

notes that relative vorticity may result from several sources, including from the 

intensification of monsoon trough circulations, waves in the easterlies, or along 

frontal zones that extend into the tropics. 
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Figure 16.   Average June – November 850 mb relative vorticity (in s-1) 
conditions over the WNP for the period 1971–2000, derived from R1 data. 

The spatial pattern of Figure 16 should be familiar to the reader by 

this point, with the greatest average values of 850 mb relative vorticity in spatial 

agreement with the monsoon trough figure described earlier in this chapter.  Of 

the three mechanisms noted by Frank that intensify relative vorticity, only the 

monsoon trough is persistent enough to be clearly represented in this six-month 

composite. 
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Figure 17.   Box plots of grid values of low-level relative vorticity (in s-1) grouped 
according to whether a TC formed in that day-grid box.  The box height 

encompasses 50% of the data points, the whiskers (dashed lines) extend 
to include ~99% of the data points, and points that fall outside the 

whiskers (outliers) are indicated by the red “+” symbols.  Constructed from 
R2 data with TC occurrences from the JTWC best track archive for the 

January–December period of 1982–2006. 

The box plots in Figure 17 support what many previous authors 

have found, that weak to positive low-level relative vorticity relates to an increase 

in TC formation probability.  Not shown are similar sets of plots for planetary 

vorticity and absolute vorticity.  In agreement with previous studies, we find that 

Coriolis parameter has a positive relationship with TC formation, and that the 

vast majority of TCs form several degrees or more from the equator. 

3. Model Variable Selection 

Several of the variables that are either directly available from the CFS or 

are easily derived from CFS output represent similar large-scale environmental 

conditions and processes.  Thus, to represent, for example, vertical motion, we 
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had to choose between 200 mb divergence and 200 mb relative vorticity, since 

both of these variables represent vertical motion (the former does so explicitly 

and the latter does so implicitly).  In making this sort of choice, we favored 

variables that: 

1) have physically plausible relationships to TC formation,  

2) are readily available directly from the CFS,  

3) or are easily derivable from available CFS variables, and 

4) are relatively skillfully predicted by the CFS. 

4. Climate Oscillations and Model Variable Relationships 

Numerous prior studies describe the intraseasonal and interannual 

variability of TC formation, especially as they relate to climate oscillations (e.g., 

Ford 2000; Chan 2004).  Of the climate oscillations that impact TC activity, the 

most often investigated are El Niño and La Niña (ENLN).  ENLN are anomalous 

oscillations of the tropical atmosphere and ocean that can alter the large-scale 

environment in ways that influence TC formations, intensities, and tracks (e.g., 

Ford 2000).  Wang and Chan (2002) offer a good illustration of how ENLN can 

influence TC activity.  They note that during the latter months of an El Niño year, 

low-level anomalous westerlies encompass much of the WNP.  These 

anomalous winds lead to positive relative vorticity anomalies in the region, which 

provide a favorable environment for TC formation that is both later in the year 

than normal, and displaced farther to the east. 

In addition to ENLN, much focus has been directed at the influence of 

intraseasonal tropical oscillations; for example, investigations into the effects of 

the MJO on TC formation in the WNP.  Frank and Roundy (2006) show that 

when MJO activity is high, TCs are more likely to form in the convectively active 

portions of the MJOs.  As with ENLN, it is likely that the impacts of intraseasonal 

variations on TCs occur mainly via alterations of the LSEFs. 
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Though climate oscillations and their impacts on TC activity are beyond 

the scope of this thesis, these brief notes are included because of their 

relationship to the subject of this thesis: intraseasonal prediction of tropical 

cyclogenesis.  With changes in the large-scale circulation in the tropics, the 

thermodynamic and/or dynamic genesis parameters may be modified; these 

modifications, in turn, alter the TC activity.  The idea is that if oscillations (ENLN, 

MJO, etc.) that have been shown to impact TC formation are skillfully predicted 

by the CFS, including the variations in the LSEFs associated with these climate 

oscillations, then a statistical-dynamical method based on the relationships 

between the LSEFs and TC formations can be skillful regardless of the oscillatory 

state of the climate system. 

D. PROBABILISTIC EQUATION DEVELOPMENT 

1. Logistic Regression 

Logistic regression, also referred to as logit regression, is an appropriate 

statistical tool for this application.  Given a combination of independent variables, 

logistic regression provides the probability of occurrence of the dependant, binary 

variable.  Let Fp  be the probability of TC formation at a given grid point for a 

given time period (one day, in this study); since Fp  is a probability it is bounded 

by zero and one. 

The natural logarithm of the odds ratio of the probability is called logit, 

where: 
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We used the statistical analysis software S-Plus to find the optimal values 

of the intercept 0b and the coefficients kb  for each contributing variable kx , such 

that: 
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Then the probability of TC formation may be calculated based on a linear 

combination of the optimal value coefficients and explanatory variables: 
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For more information regarding logistic regression, the reader is directed 

towards Wilks (2006), Devore (200), or most any college-level statistics text.  

a. Dependant Variable 

Within the framework of logistic regression, TC formation at a given 

grid point is modeled as a binary response variable and is expressed as either 

zero (no formation) or one (formation observed).  As such, this approach 

provides the model with no information as to the strength or duration of the 

storm.  We feel that this approach remains viable despite this limitation.  McBride 

(1981) comments, with respect to compositing data, that “the averaging process 

smears out the diversity between different systems and enhances features in 

common”  As such, we hope our method is applicable over more scenarios, as a 

result of including a wide variety of storms in the training of the regression model. 

b. Independent Variables 

Technically, the approach we are using is multivariate logistic 

regression, as we are allowing multiple independent, or explanatory, variables to 

contribute to the probability.  Ideally, all the independent variables in a multiple 

logistic regression analysis, would be just that, independent.  As noted earlier, 

the LSEFs are inter-related in a linked ocean-atmosphere system, thus the 

variables will all have some degree of correlation with each other.  This lack of 

true independence will allow combinations of variables to negate the need for 

others.  For example, high relative humidity often occurs in regions of warm SST, 

positive low-level vorticity, and upward vertical motion.  Therefore, if the latter 

three variables favorably exist, the addition of a humidity variable may not be 

required to ascertain the favorability of the large-scale environment. 
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2. Model Training 

Statistical methods, such as logistic regression, predict the response to 

variables based on a historical record; therefore, one must reach a balance 

between the length and the quality of the climate record.  For this reason, we 

utilize data only from the satellite era.  In developing such statistical tools, one 

must also assume a degree of stationarity of the climate system, which we know 

is not entirely the case.   

We used R2 and OISST data to train our statistical model; the availability 

of both of those datasets limited us to the years 1982 – 2006, inclusive.  Various 

forms of the model were tested, some of which were trained over the entire year, 

others were trained over just the peak formation season. 

When a model is trained over all months for the 25-year period, the size of 

the dataset becomes somewhat cumbersome [13 (latitude grid boxes in WNP) x 

37 (longitude grid boxes) x 365 (days, excluding leap days) x 25 (years) = 

4,389,125 day grid points per variable!].  One approach for the reducing the 

needed dataset is to include all the points wherein a TC was observed, but only 

include a portion of the remaining “non-occurrence” points.  We refer to the data 

from all the day grid points at which a TC was not observed as non-TC 

information (NTCI).  Various forms of the model were tested using various 

amounts (as percentages) of NTCI. 

3. Model Selection 

We made use of a series of tests to ensure our model was statistically 

sound and to assess the overall goodness of fit.  Our goal was to develop a 

model that is physically defensible, stable, and reliable.  The following tools are 

among those we relied upon to select our model from the numerous forms of the 

model that we tested. 
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a. Akaike Information Criterion 

The Akaike Information Criterion (AIC) is a goodness-of-fit measure 

that seeks to find a balance between model fit and complexity.  The model 

complexity is handled by imposing a penalty for the number of terms included in 

the equation.  A lower AIC suggests a better-fitting model.  Refer to Wilks (2006) 

or Burnham and Anderson (2002) for more information concerning AIC. 

b. Deviance 

We also used the residual deviance numbers to compare models.  

In a simplistic manner, the amount of deviance explained by a model suggests 

how much of the variability is accounted for by the combination of the included 

terms of the model.  The logic for this test being that the greater the goodness of 

fit of a model, the lower the residual deviance associated with that model.  

c. Stability 

To assess whether our model contains too many explanatory 

variables, often referred to in statistics as being overfit, we examined how much 

the variable coefficients vary when the model is constructed over different 

training periods.  A model is said to be more stable, and having a lower 

probability of being overfit, the less the coefficients vary when derived from 

different training periods. 

d. Physical Plausibility 

A viable model must indicate relationships that fit the conceptual 

models identified in prior studies and noted in the section on LSEFs.  For 

example, we expect SSTs to have a positive relationship with the likelihood of TC 

formation.  A model that suggests a negative relationship between SST and the 

likelihood of TC formation would be suspect.  In our research, we encountered 

models that suggested humidity and the probability of TC formation are inversely 

related; such a negative coefficient is not physically defensible and likely results 

from multicollinearity between the LSEFs included in the model.  This 
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multicollinearity may result from a lack of independence among predictor 

variables, in this case between humidity and the other variables included in the 

regression equation (e.g., SST, divergence; see also Devore 2000). 

4. Model Verification 

We made use of several key metrics for assessing the skill and value of 

our model when the model was used to conduct multi-year zero-lead hindcasting 

and non-zero lead hindcasting case studies.  Such metrics include the number of 

hits and misses, the Brier score (BS) and Brier skill score (BSS), the reliability 

diagram, the relative operating characteristic (ROC) curve, and the economic 

value diagram (EVD). 

5. Motivations for a Probabilistic Forecast 

Among the reasons for selecting multivariate logistic regression as the 

statistical tool by which to develop a statistical-dynamical prediction method are 

the potential benefits of producing probabilistic forecasts.  In order to reap these 

benefits, the probabilities must represent true probabilities.  The probabilities may 

not be true probabilities if the model is ill constructed.  Among the potential 

benefits of probabilistic forecasts, is that customers may use the true probabilities 

to compare to the risk profile of a given mission and, thereby adjust their decision 

making.  Also, such probabilistic output allows for a relatively straightforward 

conversion to anomaly-type forecasts that may be useful deliverable for many 

decision makers.   

E. SUMMARY OF PREDICTION METHOD 

Figure 18 is a schematic of the process involved in creating and 

operationalizing the prediction process used in this thesis.  This process is a 

combined statistical-dynamical one, wherein one uses a numerical model to force 

a statistical model to generate ensemble based, probabilistic, intraseasonal 

predictions of TC formations.   
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Figure 18.   Depiction of the process for generating intraseasonal predictions of 

tropical cyclogenesis. 
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III. RESULTS 

A. REGRESSION MODEL 

The underlying goal in generating a regression model, is to construct an 

equation for the probability of TC formation for individual day grid points based 

on the values of corresponding atmospheric and oceanic variables.  Multivariate 

logistic regression was used to find optimal values of the intercept 0b and the 

coefficients kb  for each contributing variable kx , such that the probability of TC 

formation Fp  at any given day grid point is: 
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Table 1 below lists the variables and coefficients that are included in the 

model we chose.  The paragraphs that follow highlight some of key details as to 

how this model was constructed and why it was chosen from amongst the many 

model permutations tested. 

Table 1.   Variable coefficients and related statistics, generated over a June-
November training period for the years 1982-2006. 

Variable Regression 
Coefficient 

Significance 
Rank 

Standard 
Error t Value 

- (Intercept) b0 -27.41179 - 1.81639 -15.09 
x1 850mb Rel. Vorticity b1 167645.1 1 7074.82 23.69 
x2 850mb Rel. Vorticity2 b2 -1679802094.0 2 112033900 -14.99 
x3 SST b3 0.6567593 3 0.06061 10.83 
x4 Vertical Wind Shear b4 -0.05990173 4 0.00687 -8.71 
x5 Coriolis Parameter b5 15861.34 5 2646.58 5.99 
x6 200 mb Divergence b6 24729.49 6 6152.83 4.01 

 
 

As one can see, the variables selected for inclusion in the model include: 

850 mb relative vorticity, 850 mb relative vorticity squared, SST, vertical wind 

shear, Coriolis, and 200 mb divergence.  The magnitude of the regression 

coefficients are not indicative of the relative importance of that term, but are 
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reflections of the units of the variable.  In addition, the units of the coefficients are 

the inverse of the units of the associated variable, thus the linear combination of 

the variables and their coefficients is unitless.  One may also note what is not 

included in this equation that appears in the original listing of genesis parameters 

by Gray (1975), that being a term representing mid-level humidity.  The results 

from statistical testing indicated a significant degree of multicollinearity between 

such a moisture variable and the other terms of the equation.  The exclusion of a 

moisture variable is not to say it is not important for the formation of TCs, but 

rather that the combination of the other variables (cyclonic low-level circulation 

over warm ocean water, etc.) act as a suitable proxy for a moisture variable.  

Of the included variables, SST is the only one directly available from the 

CFS.  The Coriolis parameter is a function of latitude, and thus requires no model 

input.  The remaining variables are all calculated from the 200 mb and 850 mb 

zonal and meridional winds, which are available from the CFS.  Despite the need 

for these calculations, we feel that these variables are likely more predictable 

within the CFS than other variables that are more dependent upon 

parameterizations.  For example, a variable for precipitation rate within the CFS 

would be highly dependent upon the convective parameterization scheme; 

whereas, the upper-level component winds are based more on observational 

data assimilated directly into the model and integrated via the primitive 

equations. 

As aforementioned, a key factor in selecting a regression model is to 

ensure physically plausibility.  All the included variables have been shown to be 

influential, or are known to be closely related to variables that have been shown 

influential, in tropical cyclogenesis.  In addition, the sign on each coefficient fits 

the conceptual model of that variable’s relationship to TC formation.  More 

specifically, low-level relative vorticity, Coriolis parameter, SST, and upper-level 

divergence each have positive coefficients, and an increase in one or all of those 

variables translates into a more favorable environment for TC formation.  The 

negative coefficient on the vertical wind shear term indicates that the lower the 
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vertical wind shear, the more favorable TC formation.  The negative coefficient 

on the squared vorticity term is plausible as well, as described later in this 

section. 

The significance ranks listed in Table 1 are based on the probability that 

the given term is not significant to the performance of our model per the Chi-

squared test.  These rankings may be interpreted as indicating that 850 mb 

relative vorticity has the lowest probability of not being significant to our model, 

and thus may be viewed as the most statistically influential component of the 

model.  All of the terms included in this model are statistically significant to the 

regression model; therefore, even though the 200 mb divergence term has the 

lowest significance rank, it is still a significant contributor to the model. 

An issue that plagued the development of this model was the persistence 

of storms after the formation day.  In developing the model, we assigned a hit, or 

occurrence value of one, to the day grid point at which the JTWC best track data 

placed the formation point for each given storm.  As the LSEFs appeared to vary 

little from the day of formation to the days immediately surrounding the formation 

day, the regression model was forced to discern the difference in the LSEFs 

between those days, in essence asking why was one day a hit and the following 

day—with nearly identical LSEFs—a non-occurrence point?  To make matters 

worse, the R2 data used in the training of the models often depicts the storm 

tracks well.  Therefore, the LSEFs following the JTWC formation date were often 

more favorable than on the formation date.  This is especially true for the 

dynamic variables.  As a result, we needed a way to focus the model in on the 

day of formation and introduce a variable or mechanism to the model to identify 

when a well-developed storm is being depicted by the assimilated reanalysis 

fields. 

We adopted three modifications in the construction of this model to focus 

on the formation day and to reduce the model predicted probabilities associated 

with storms that have already formed.  First, we adopted a mean sea level 

pressure (MSLP) filter.  Before including a non-occurrence day grid block into the 
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regression, we filtered out blocks for which the MSLP was less than 990 mb.  

Second, we reduced the NTCI to 40%; this allowed us to randomly eliminate 

some blocks associated with storms that have already formed, while still retaining 

784,660 non-occurrence points in the development of the regression model.  

Third, we added the squared 850 mb relative vorticity term.   

The squared 850 mb relative vorticity term forces a non-linear response to 

the 850 mb relative vorticity in the generalized linear model.  Of all the LSEFs, 

the low-level vorticity appears to change the most through the life of a TC.  In 

order to focus our model in the formation day—rather than when a storm is a 

well-developed circulation center—we included this vorticity squared term into 

the regression model.  With its negative coefficient, this term acts to decrease the 

probability of TC formation as the relative vorticity increases.  In essence, we are 

attempting to decrease the likelihood of formation in regions where a TC already 

exists. 

Other variables considered for inclusion, but not appearing in the final 

form of the model include, but are not limited to, 200 mb relative vorticity, 

thickness, MSLP, precipitable water, and 850 mb divergence.  We also 

entertained the inclusion of combinations of several variables, such as absolute 

vorticity rather than relative vorticity and the Coriolis parameter separately, and a 

combined upper-level minus low-level divergence term. 

The final form of the model outlined in Table 1 was trained only on the 

peak formation period, June through November, for the years 1982 through 

2006.  To evaluate the stability of the model (see Section II.D.3.c), we developed 

the regression equation several times, each time excluding one year from the 

training period.  Table 2 lists the coefficients from some of these runs.  The 

variations in the coefficients are minor; therefore, we concluded that our model is 

stable and not overfit.  Excluding years also provided us with years of 

independent data (years over which the model was not trained) with which to 

conduct additional verification. 
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Table 2.   Comparison of regression coefficients for models with altered training 
periods.  The training period for the full model is all years during 1982-

2006. 

Variable Full Model Excluding 1982 Excluding 1997 Excluding 2001 Excluding 2006 

(Intercept) -27.41179 -27.51922 -27.44453 -27.40436 -27.17824 
Rel. Vorticity 167645.1 164535.9 165662.7 166313 171080.2 
Rel. Vorticity2 -1679802094 -1641682993 -1638789695 -1668518817 -1770825439 

SST 0.6567593 0.661396 0.6575657 0.6569342 0.6482437 
Shear -0.05990173 -0.06006378 -0.05951317 -0.05778334 -0.05813202
Coriolis 15861.34 16133.2 16637.09 15938.68 16204.37 
Divergence 24729.49 26888.63 24222.44 23897.41 23509.69 

 

This model was trained on data with daily temporal resolution, which 

poses two potential challenges.  As TCs are rare events—626 formations from 

among 785,286 day grid blocks in the training period—the daily probability of TC 

formation is incredibly low.  This is true even for the most favorable locations 

(i.e., the climatological position of the monsoon trough) and times of year.  For 

example, daily probabilities during the height of the peak formation period in 

favorable regions seldom exceed 0.05, or 5%.  Such low probabilities—even if 

the probabilities are reliable—may be a challenge for forecasters and operators 

to interpret.  In addition, at daily scales, the predictability at intraseasonal leads of 

the variables included within this model tends to be low.   
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Figure 19.   Example of contoured, seven-day summed probabilities, centered 

about the 264th day (21 September) of 2001, constructed from R2 and 
OISST fields using the model described above.  The red dot indicates the 

verification point for a TC that formed on 21 September 2001. 

In order to address these problems concerning daily probabilities, we 

investigated non-native versions of the probabilistic output.  The version upon 

which we settled was a summed seven-day probability.  When using TC 

formations to verify this model output, we compared the TC formation date and 

location to the sum of the output probabilities for the seven days centered on the 

formation day: the three days prior to formation, the day of formation, and the 

three days following formation.  Figure 19 is an example of seven-day summed 

probabilities from a hindcast valid 21 September 2001; the days summed to 

create this plot are 18 September through 24 September.  The subsequent plot 

(not shown) would be valid on 22 September 2001, and be the summation of 19 

September to 25 September daily probabilities.  The reasons for favoring this 

seven-day summation were threefold.  First, the probabilities of formation at daily 

time steps are small due to the rarity of TC formation, so the summation 

increases the probabilities in active grid blocks to values that may be used in 

decision-making by users.  Second, the daily output of summed seven-day 

probabilities should enhance the predictability within the model, as it reduces the 

potential impacts of timing error within the forecast fields, and provides a better fit 

with the time averaging approach that tends to enhance the skill of long lead 

forecasts.  Third, this approach enhances the usefulness as a planning product; 
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for example, if operators are planning an intraseasonal lead times multi-day 

transits of the WNP, a multi-day probability forecast may be a better match to the 

planning process.  The probabilities shown in the remainder of this thesis are 

seven-day summed probabilities, unless otherwise specified.   

B. VERIFICATION OF THE REGRESSION MODEL 

As depicted in Figure 1 of this thesis, Verification/Evaluation is a vital step 

in the climate prediction process.  Such verification and evaluation is required for 

two primary reasons: to identify potential shortfalls or weaknesses that may be 

corrected be re-doing the model development stage, and to ascertain the 

potential skill and value the method offers potential users. 

In our verification of this regression model, we faced two complicating 

factors.  First, we are actually predicting the favorability of the large-scale 

environment to support TC formations not formations themselves.  This 

shortcoming returns to the idea that the LSEFs used in the model are necessary, 

but may not be sufficient, as noted in Section II.C.  This complication arises when 

one uses actual TC occurrences to verify what are essentially forecasts for the 

propensity for TC formation based on environmental factors.  The second 

complicating factor is that few techniques exist to verify spatial-distributed 

predictions of events that are as rare as TC formations. 

Other organizations that are delving into the realm of intraseasonal climate 

prediction appear to be struggling with verification as well.  With no standard 

approach as to how to verify such predictions, we feel the best approach to 

verification is to use several methods in concert. 

1. Quantitative Verification 

The first class of verification we explored was quantitative verification.  For 

the sake of brevity, we note only the key points for each quantitative verification 

technique.  The reader is directed to references, such as Wilks (2006) or Eckel 

(2008), for additional details on the construction and interpretation of these 
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verification techniques.  Paramount in quantitative verification is having sufficient 

forecasts to verify.  In order to encompass a sufficient number of storms, the 

verification in this section is for multi-year zero-lead hindcasts over dependant 

data.  The period of verification, unless otherwise specified, is the June through 

November peak formation period, as this matches the period over which the 

model was trained and reduces the potential for data dilution from the months 

when few storms develop.  Over this period for the years 1982 to 2006, 626 

storms were identified by the JTWC in the region we define as the WNP, versus 

752 storms if the verification period is expanded to encompass every day of the 

year for the same years.  So relatively few TCs were left out of the verification 

process when we limited ourselves to verifying using just June-November TCs. 

Many of the quantitative verification techniques that follow are based on 

dichotomous observation values; a value of one if the event is observed, or zero 

if the event is not observed.  For our verifications, we opted to credit an observed 

value to any grid point that fell at or within a 2.5° radius of the JTWC formation 

point.  We feel a 2.5° radius about the formation point accounts for the spatial 

influence of a forming TC, as well as accounts for some of the uncertainty in the 

formation location in the JTWC best track data.   

To provide us with a standardized measure of performance based on our 

predictions of the probability of formation, we used the Brier skill score (BSS).  

Over the peak formation season, our model results in a BSS of 0.029055 

(0.028211…0.02994).  The ranges included in the parentheses represent a 95% 

confidence interval, generated through jackknifing each of the years in the 

training period.  Recall that positive values of the BSS represent improvement 

over the sample climatology baseline; thus, our model shows notable skill.  When 

verifying the model over the full year, the BSS increases to 0.032555 

(0.031927…0.033182).  Eckel (2008) notes that BSS is vulnerable to dataset 

dilution, which likely accounts for this increase in the skill score when verifying 

over the entire year. 
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Figure 20.   Reliability diagram (left) and bin histogram (right) generated with 
minimum bin intervals of 0.005 for the zero-lead hindcasts, from the model 

outlined in Table 1 over the June – November period for 1982 to 2006; 
error bars represent a 95% confidence interval. 

 
Figure 21.   The same reliability diagram as in Figure 20, but focused in on the 

lower probabilities; error bars represent a 95% confidence interval. 
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Figures 20 and 21 depict the reliability diagrams for zero-lead hindcasts 

with the model outlined in Table 1, for the peak formation seasons of the years 

1982 through 2006.  The reliability diagram for a perfectly reliable model would 

lie along the diagonal indicated by the dashed line.  Points within the region 

defined by the solid lines indicate positive skill.  The figures show graphically 

what we learned from the BSS, that this model exhibits skill over the sample 

climatology baseline.  The line connecting the results points is above the 

diagonal, indicating that the model slightly underforecasted TC formations.  The 

sporadic behavior—as captured by the error bars—in the “higher” probabilities is 

likely due to the drop in number of points in those bins.  From these reliability 

diagrams, we obtain an approximate BSS of 0.02852, reliability of 0.000065693, 

resolution of 0.00032856, and uncertainty of 0.0092171. 

 

Figure 22.   ROC diagram for the zero-lead hindcasts over the peak formation 
season for the years 1982 to 2006. 

In addition to having skill, a worthwhile predictive method must also offer 

utility and value to the user.  The relative operating characteristic (ROC) diagram 

and economic value diagram (EVD) are two graphical tools that one may use to 
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ascertain whether a method may offer such value and utility.  Figure 22 shows 

the ROC diagram for the zero-lead hindcasts over the aforementioned 

verification period.  A diagonal line (not shown) connecting (0,0) with (1,1) would 

represent zero resolution or no discrimination.  Forecasts with better 

discrimination have ROC curves approaching the upper-left corner of the 

diagram (Wilks 2006).  As a result, one can see that the model exhibits fair 

discrimination and offers potential utility to the user.  Along with the ROC 

diagram, one may calculate a ROC skill score (ROCSS), which has a value of 

one for a perfect forecast and is less than zero if the forecast is worse than the 

sample climatology forecast.  The ROCSS for these hindcasts is 0.68325. 

 

Figure 23.   EVD for the zero-lead hindcasts over the peak formation season for 
the years 1982 to 2006. 

An EVD, as shown in Figure 23, plots value score versus cost/loss (C/L) 

ratio, and is a representation of the potential value added by following the 

forecast guidance for each customer (as defined by their C/L ratio).  While initially 

one may not be impressed by the EVD in Figure 23 due to its skew, this EVD 

actually depicts significant potential value for risk adverse customers.  Whether a 
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customer defines their C/L ratio in terms of dollars, sortie hours, or crew morale, 

most customers would be risk adverse (low C/L ratio) to a hit by a TC.  A 

hypothetical example may be in order.  Let us imagine a cruiser is steaming 

towards Subic Bay and the forecast calls for a TC; the captain can either divert 

around the storm at an additional cost of $100,000 above and beyond typical 

operating costs.  Alternately, the captain may maintain course and if the cruiser is 

hit may suffer damages worth $1M in equipment and lost time.  With these 

numbers this customer would have a C/L ratio of $100,000/$1,000,000 or 0.1, 

and thus should be highly risk adverse.  For such a customer, the EVD indicates 

that the model has the potential to be very valuable in mission planning.  While 

this example is grossly oversimplified, it reveals in the basic idea associated with 

the EVD and, thus, the potential benefits of this model.  

2. Qualitative Verification 

While qualitative verification is often not as definitive as quantitative 

verification, it does offer the advantage of allowing us to verify using purely 

independent data.  Options for independent data include using runs generated 

with a year left of out of model development, then verifying over that excluded 

year, or using another variable source (such as R1 data for atmospheric 

variables).   

 
Figure 24.   Example of contoured, seven-day summed probabilities, centered 

about the 236th day (24 August) of 2001, constructed from R2 and OISST 
fields.  The red dot indicates the verification point for a TC that formed on 

24 August 2001.   
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Figure 24 is a contour plot of probabilities for the period of 21-27 August 

2001.  The model used in generating this plot was trained over a period that 

excluded the year 2001; therefore, this plot was generated with independent 

data.  Plots such as that in Figure 24 indicate that the methodology proposed in 

this thesis may prove beneficial, as this zero-lead hindcast shows “high” 

probabilities that resemble those expected from reverse monsoon trough 

conditions that are very different from those that would be expected from typical 

monsoon trough climatological conditions in August. 

 
Figure 25.   Example of contoured, seven-day summed probabilities, centered 

about the 309th day (5 November) of 2001, constructed from R2 and 
OISST fields.  The red dot indicates the verification point for a TC that 

formed on 5 November 2001. 

Figure 25 shows a zero-lead hindcast in which the pattern of model 

probabilities resembles the pattern that might be expected from climatological 

monsoon trough conditions.  This figure represents situations in which the model 

proability patterns are similar to climatological patterns.  But even when the 

model patterns resemble climatology, the model may add value by providing a 

more accurate prediction of the magnitude of the probabilities, as discussed in 

the next section. 
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3. Comparison to Climatology 

The preceding plots provide hope as to the potential usefulness of our 

proposed method for predicting TC formations.  One may wonder how this 

method compares to climatology, but with climatology comes the question of 

what form of climatology is the best against which to compare our method.  See 

Appendix A for a brief discussion on the various forms of climatology one may 

select. 

The idea of hits and misses is commonplace in verification, and one we 

shall use here.  A simple subtraction of the climatological formation probability 

from the hindcast probability at every day grid block yields a difference matrix.  

Using the JTWC best track formation points, a hit (miss) is defined as occurring 

when the difference at the day grid block of formation is positive (negative).  

Scoring over the years 1982 through 2006, our model had 681 hits and 81 

misses, for a hit rate of 89%. 

 
Figure 26.   Plot of the difference matrix resulting from subtracting climatological 

probabilities from hindcast probabilities centered on 24 August 2001, the 
same day used in Figure 24.  Green dots denote the formation points for 

the four storms that formed with in the seven-day period of 21 – 27 August 
2001. 

One may also plot this difference matrix; Figure 26 is an example of such 

a plot.  Warm (cool) colors represent regions where the probabilities from the 

model are higher (lower) than the climatological probabilities.  This approach is 

akin to an anomaly forecast, where the positive regions may be interpreted as 
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having a greater than normal likelihood of TC formation.  The period of 21-27 

August 2001, which is depicted in Figures 24 and 26, was unusually active along 

20°N.  This difference product highlights this activity, but it also indicates that the 

probability of formation along the climatological position of the monsoon trough is 

lower than climatology suggests.  In some cases, knowing that formation is less 

likely in a region when compared to climatology may be just as beneficial as 

knowing that formation is more likely in some other region. 

4. Climate Oscillations 

Section II.C.4 briefly introduced the impacts of ENLN on TC formation.  If 

our model accurately depicts the favorability of the large-scale environment, then 

it should depict a shift in the probabilities associated with the changes in the 

large scale environment that are associated with ENLN.   

 

Figure 27.   Average daily probabilities for the JASO period from composited El 
Niño years (top) and La Niña years (bottom). 
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Defining ENLN years based on the Oceanic Niño index (ONI), we can take  

1982, 1987, 1991, and 1997 as classic (non-Modoki) El Niño years and 1985, 

1988, 1999, and 2000 as La Niña years.  Averaging the daily probabilities from 

the zero-lead hindcasts over the July, August, September, and October (JASO) 

period, yields the probability patterns shown in Figure 27.  Note the shift in the 

highest probability regions between the two plots, these shifts are similar to those 

described in prior studies of the impacts of ENLN on TC formations (e.g., Ford 

2000).  For example, the high probabilities that extend farther to the east during 

the El Niño years are representative of the eastward shift of the regions of warm 

water, low-level cyclonic flow/convergence, and low vertical wind shear from their 

climatological positions.  In contrast, slightly higher probabilities near the 

Maritime Continent in the bottom panel of Figure 27 are due to the westward shift 

of favorable LSEFs during La Niña years. 

5. Conditional Climatologies 

Another potential use for our model that emerged during this research was 

the possibility of creating conditional climatologies in the manner of constructed 

analogues.  The underlying idea is that rather than generating a climatology plot 

based on the raw formation data, we could generate a plot based on model-

generated probabilities.  This approach could be as basic as generating an 

annual climatology based on LTM conditions, or as complex as conditioning 

based on time of year, ENLN, et cetera. 

 
Figure 28.   Probabilities from LTM JASO R1 and OISST variables.  The red 

dots indicate the formation points for all JASO TCs from 1971 – 2000. 
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Figure 28 depicts contours of daily probabilities for the JASO period, 

based on LTM R1 and LTM OISST LSEF values composited over the years 1971 

–2000 and 1982 – 2000, respectively.  The period of 1971 – 2000 is used for this 

and other long-term mean conditions, as it represents the current World 

Meteorological Organization (WMO) standard, 30-year climatology period.  This 

plot is not a perfect representation of the raw climatology; for example, the 

formation points clustered around 25°N and 165°E are not captured well by the 

contours despite the density of storms in that location. 

 

Figure 29.   Contoured, seven-day probabilities, constructed from R2 and 
OISST fields.  The red dots indicate the verification point for TCs that 

formed during such conditions.  

The concept of a constructed analogue is combining past anomaly 

patterns such that the resulting combination reflects the desired state of the 

climate (van den Dool 2007).  As an example, we constructed a probability plot 

for the month of June when the climate system is entering into an El Niño 

pattern.  Using the ONI, such conditions were met during the years 1991, 1997, 

and 2002.  Averaging the probabilities from our model for these three months 

(one month each for three years) and dividing to give us seven-day probabilities, 

results in what is depicted in Figure 29.  In essence, the result is an improved 

representation of expected probabilities for a week in the month of June when an 

El Niño event is developing. 
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Though this method is not without limitation, it has a remarkable 

advantage in that this approach does not require dynamical input.  As a result, 

this constructed analogue approach may be useful for providing tropical activity 

outlooks at extended lead times. 

6. Verification Against Deep Convection 

As noted in the beginning of the section on verification, many of the 

verification methods we have discussed thus far are problematic because they 

verify against observed TC formations, even though the model predicts the 

propensity for formation, not actual formations.  Thus, we chose to also verify 

against outgoing longwave radiation (OLR), since low OLR values indicate deep 

convection and thus a large-scale environment that is likely to be favorable for 

TC formation.   

 

Figure 30.   Comparison of zero-lead hindcast probabilities (top) and OLR 
(bottom).  OLR image provided by Physical Sciences Division, Earth 

System Research Laboratory, NOAA, Boulder, Colorado, from their Web 
site at http://www.esrl.noaa.gov/psd/. 
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Figure 30 is presented as an example of model-derived probabilities for 28 

October through 3 November 2006 and the corresponding NOAA Interpolated 

OLR.  Note in the tropics the general correspondence between the higher 

probabilities and the low OLR values (cool colors) that correspond to cold high 

cloud tops and deep convection.  This sort of correspondence indicates that the 

model is capable of identifying deep convective regions that are favorable for TC 

formation, and has the potential to be useful in intraseasonal predictions of 

tropical convective activity.  To operationalize such an approach for predicting 

convective activity, the Coriolis term should be removed from the regression 

model.   

7. Verification in Other Basins 

This final form of verification is one that tests whether the model truly 

represents a physically sound combination of LSEFs.  Earlier authors presented 

their genesis-parameters as relevant to TC formations in all tropical ocean 

basins.  As a result, one is left to wonder how the model, as described in Table 1, 

would perform on fully independent data in basins other than the WNP.  Figure 

31 is an example of a probability plot that results when the Pacific-trained model 

is used to generate probabilities for the North Atlantic basin. 
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Figure 31.   Example of contoured, seven-day summed probabilities over the 
Atlantic basin, centered about the 233rd day (21 August) of 2006, 

constructed from R2 and OISST fields using the model trained on the 
WNP.  The black dot indicates the verification point for a TC that formed 

on 21 August 2006. 

Quantitative verification of the storms that developed into tropical storms 

or hurricanes in the Atlantic during the months of June through November and 

years 1982-2006 yields promising results.  Over that period, hits number 273 and 

misses 16, with a BSS of 0.019476 (0.018584…0.020306) and a ROCSS of 

0.58959.  These positive results suggest that the LSEFs that influence TC 

formation are the same regardless of the ocean basin.  This cross-basin 

verification confirms what was proposed by authors such as Gray and Frank, that 

the same set of LSEFs influence TC formation regardless of the ocean basin.  

Though the model is likely better tuned if trained over the basin over which it will 

be used as a predictive tool, this comparison suggests that one basic model may 

be skillfully applied to multiple basins. 
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8. Model Shortcomings 

Two potential shortcomings were identified in the verification of the zero-

lead hindcasts.  Both of these shortcomings deal with the post-formation 

environment.  First, the conditions that follow the formation day are likely to be 

represented by the model as remaining favorable for formation, despite a TC 

having already formed.  The impacts of this shortcoming may be minimized by 

noting that the probabilities represent the favorability of the large-scale 

environment for TC formation, and if a TC forms the high probabilities may 

represent the likely track of the storm.  Second, TCs may act to enhance or 

suppress the formation of other tropical cyclones (Frank 1982).  Due to the 

coarse resolution of the CFS, it may poorly represent the TC-environment 

feedback.  Further study would be required to assess the impacts of this second 

shortcoming, though such research ventures beyond the scope of this thesis. 

C. VARIATIONS OF THE REGRESSION MODEL 

The previous verification sections have tested a model containing terms 

for 850 mb relative vorticity, 850 mb relative vorticity squared, SST, vertical wind 

shear, Coriolis parameter, and 200 mb divergence, and trained over the peak 

formation period for the years 1982-2006.  Through the course of this thesis 

research, numerous forms of the model were tested, in addition to this final 

model.  For example, we varied the training period of the model, such as training 

the model over the entire year and over JASO, rather than just over the peak 

formation period.  We also investigated the inclusion and/or combination of other 

variables as noted earlier in Section III.A.  Using the suite of metrics and 

verification techniques listed in Chapter II, we selected the final model from 

among the many tested.  For the sake of brevity, only verification for the final 

model has been presented in this thesis. 

D. FINDINGS FROM CFS CASE STUDIES 

The previous sections have explored the validity of the statistical model in 

identifying likely formation regions.  The associated verification metrics represent 
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the potential skill, value, and applications as defined by the zero-lead hindcasts.  

In this section we demonstrate the ability to use the CFS as the source of LSEF 

values with which to force the regression model and generate forecast 

probabilities (see Figure 18).  The availability and format of CFS output fields 

negates the use of many of the quantitative verification metrics that were 

possible with the reanalysis-based, zero-lead hindcasts.  As a result, in order to 

investigate the predictive potential of the proposed technique, we will present a 

pair of case studies.  The first case study is of a pair of storms from 2008 using 

operational CFS data; the data used for Case 1 is exactly what is readily 

available on a daily basis, and that could be used to operationalize the method 

proposed in this thesis.  The second case study is one from 2003 using archived 

CFS hindcast fields.  Plots from some additional case studies are included in 

Appendix C. 

1. Non-Zero Lead Hindcasts: Case 1 

TC activity in the 2008 TC season in the WNP was relatively low, for 

reasons that are not yet clear.  From this low activity season, we examined two 

rather low intensity TCs.  Our model should be robust enough to predict TCs in 

low activity seasons and TCs that do not reach high intensities.  The only thing 

that may be notable about these two TCs, Mekkhala (20W) and Higos (21W), is 

that the JTWC has traced their origins back to the same day in 2008. 

Disturbances that would develop into Mekkhala and Higos were identified 

for as early as 27 September (see Figure 32 for formation points).  Mekkhala, 

developing in the South China Sea, would grow to tropical depression strength 

by the following day, and be a named tropical storm another day later, on 29 

September.  Similarly, Higos, forming in the WNP, would reach tropical 

depression strength, and then tropical storm strength on 29 September. 
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Figure 32.   CFS ensemble mean probabilities from runs initiated on 13 
September 2008, valid 24-30 September 2008.  Formation points (solid 

circles) and tracks (open circles) are included for Mekkhala (magenta) and 
Higos (green). 

Figure 32 is a plot of the mean seven-day probabilities from the four-

member ensemble.  From this plot alone, it appears the CFS predicted the 

potential for above-average TC activity in the greater monsoon trough region at a 

two-week lead (tau: 336 hours).  The difference plot in Figure 33 confirms that 

the CFS-based probabilities were higher at both formation points than what 

climatology would have provided.   

 

Figure 33.   A probability difference plot of the CFS ensemble mean 
probabilities (as in Figure 32) minus the climatological formation 

probabilities for the same period.  Formation points are included for 
Mekkhala (magenta) and Higos (green). 
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Figure 34.   Seven-day probabilities from each of the four ensemble members, 
initiated on 13 September 2008, valid 24-30 September 2008.  Formation 

points are included for Mekkhala (magenta) and Higos (green). 

Figure 34 separates the ensemble mean plot in Figure 32 into individual 

ensemble members.  Recall that the members are identical models, but have 

different initial conditions and/or initiation times (00Z or 12Z).  These minor 

variations between the members do result, as shown in Figure 34, in pronounced 
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differences after a two-week integration.  A quick comparison of these seven-day 

probabilities reveals that no one member performed better than the others for 

both of these storms, although member four appeared to strongly predict the 

development of Higos. 

The contoured probability plots like those in Figure 34 represent summed 

daily probabilities.  In addition to the spatial variability of the individual members, 

we could also analyze the temporal variations between the members.  This 

additional degree of variability is not shown in this report, although the variations 

are what one would expect when comparing runs of any dynamical model—

timing differences exist from run-to-run.  The spatial and temporal variability 

between members highlights what was first mentioned in Section II.B.4, that the 

ensemble approach smoothes out differences between the runs, and highlights 

the more predictable elements of the climate system.  Thus, this ensemble 

approach should lead to enhanced predictive skill overall, although there will, of 

course, be exceptions. 

As highlighted earlier, ensemble member four appeared to capture the 

formation of Higos.  We explored the individual LSEFs that contributed to the 

probabilities plotted in panel d of Figure 34.  Figure 35 displays those LSEFs for 

the day of formation, 27 September 2008.  
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Figure 35.   Individual LSEFs from ensemble member four for the formation 
day, 27 September 2008. 
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The panels in Figure 35 depict the LSEFs for the formation day in the 

order of their statistical significance in the regression model: a) 850 mb relative 

vorticity, b) 850 mb relative vorticity squared, c) SST, d) vertical wind shear, and 

e) 200 mb divergence.  The Coriolis term is not shown, as it is a simple function 

of latitude, and thus does not vary by member or run.  The regression model, 

when applied to variables from member four, predicted the highest probabilities 

of formation for the week centered on the formation day to be near 10°N and 

140°E, very close to the actual formation location.  Though the panels in Figure 

35 are for the formation day alone, they reveal why the high probabilities are 

predicted where they are.  The region surrounding 10°N and 140°E is forecasted 

to experience high low-level relative vorticity, very warm SSTs, near a low shear 

zone, and positive upper-level divergence. 

 

Figure 36.   Winds at a) 200 mb and b) 850 mb from a two-week lead of 
ensemble member four valid for the formation day, 27 September 2008. 

The vorticity, vorticity squared, shear, and divergence terms included in 

the regression model are all calculated from the zonal and meridonal winds 
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available from the CFS.  Figure 36 depicts the 200 mb and 850 mb winds from 

member four on formation day; the component winds used to create these full-

wind plots are the same used to calculate the variables in Figure 35, except SST.  

Note the cyclonic circulation at 850 mb and anticyclonic outflow at 200 mb 

forecasted by member four for the formation day at a two-week lead. 

In this particular case study, a well-trained forecaster might have been 

able to use just the CFS output fields (as in Figure 36) to foresee the 

development of Higos around 10°N and 140°E.  Some readers may then 

question, why would one not just use the available CFS dynamical output to 

forecast tropical cyclogenesis?  Many of the potential benefits of the combined 

statistical-dynamical approach have been noted implicitly elsewhere in this 

thesis.  We feel that from the dynamical perspective, employing an ensemble 

minimizes the impacts of spatial and temporal errors within the model.  If we 

analyzed member three, rather than member four, in the preceding figures, one 

would see that both the timing and strength of the circulation would have been 

inaccurate; therefore, a forecaster would have likely miss-forecasted the 

formation of Higos.  A reason why operational numerical weather prediction is 

seldom used beyond ten days to two weeks is that longer leads are often beyond 

the limit of predictability of individual weather elements.  Exploiting the expanded 

predictability of the large-scale circulations and ocean memory may extend the 

predictability of this combined method, vice the predictability of individual 

elements.  Furthermore, the regression model represents a physically- and 

statistically-sound combination of LSEFs, which allows one to produce a reliable, 

repeatable prediction of TC formation.  Rather than having to intuitively compare 

multiple output fields and subjectively generate a forecast, the contoured plots 

from the proposed method are easily generated and interpreted by forecasters or 

users.  For these reasons, we feel that this combined statistical-dynamical 

method is a viable approach to intraseasonal prediction of tropical cyclogenesis. 
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Figure 37.   Comparison of CFS-based TC formation probabilities in the form of 
an ensemble mean/spread plot (top) and OLR (bottom) for the same 

period.  OLR image provided by Physical Sciences Division, Earth System 
Research Laboratory, NOAA, Boulder, Colorado, from their Web site at 

http://www.esrl.noaa.gov/psd/. 

As noted earlier, in addition to intraseasonal prediction of tropical 

cyclogenesis, this method appears to highlight regions of likely tropical deep 

convection.  Figure 37 is a comparison of CFS-based forecast probabilities, in 

the form of an ensemble mean/spread plot, and OLR for the period of 24-30 

September 08.  Whether verified against the formation of Mekkhala and Higos, 

difference from climatology, or against deep convection, the CFS-based 

probabilities from this case study show promise for this combined approach at a 

lead time of two weeks. 
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2. Non-Zero Lead Hindcasts: Case 2 

As a second case study into the predictive potential based on CFS, we 

focused on Ketsana and Parma (20W and 21W, respectively), two storms that 

formed on 18 October 2003.  Rather than constructing a four-member ensemble 

from the operational CFS, we used the archived ensemble mean from the CFS 

hindcast project.  This ensemble mean is an average of all 15 members 

initialized in one month from the CFS hindcast project.  As a result, the initial 

conditions of the ensemble mean are staggered over the period of a month.  Like 

other CFS runs, the integrations extended out to nine months.  These ensemble 

mean runs are available once per month in the CFS archive, with the valid times 

beginning on the ninth day of every month.  Thus we were able to work with a 

nine-day lead (tau: 144 hours) and a 39-day lead (tau: 864 hours) in this case 

study. 

 

Figure 38.   Contoured, seven-day summed probabilities, centered about 18 
August 2003, constructed from a) R2 and OISST and b) R1 and OISST 
fields.  The red dots indicate the formation points for Ketsana (right) and 

Parma (left). 
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This second case study was chosen not for its perceived performance 

based on the CFS, but rather for its unusual reverse-oriented monsoon trough 

and high probabilities visible in the zero-lead hindcast (Figure 38).  Figure 38 

displays the high probabilities that extend SW to NE over the WNP when using 

both the R1 and R2 reanalyses.  The strong similarity between the R2-based 

(top) and R1-based (bottom) plots suggest that our model is not overly sensitive 

to the specific analysis and assimilation system.  The logical question that follows 

is whether the 15-member CFS ensemble mean would predict this unusual 

activity. 

 

Figure 39.   Contoured, seven-day probabilities, centered on 18 October 2003, 
constructed from the archived CFS ensemble mean at a nine-day lead.  

The red dots indicate the formation points for Ketsana and Parma. 

To assess the predictive potential, we first investigated the nine-day lead 

forecast.  Figure 39 depicts the probabilities of TC formation for the period 15-21 

October 2003, based on archive CFS ensemble mean fields with a nine-day lead 

from the day of formation.  The formation points for both Ketsana and Parma are 

included within the 0.5% minimum contour.  

Figure 40 is the same as Figure 39, but from fields with a 39-day lead from 

the day of formation.  While the contours do suggest activity around 15°N, the  
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CFS-based probabilities at such a lead are notably different from the reanalysis-

based, zero-lead probabilities (Figure 38) and do not indicate reverse monsoon 

trough conditions.  

 

Figure 40.   Contoured, seven-day probabilities, centered on 18 October 2003, 
constructed from the archived CFS ensemble mean at a 39-day lead.  The 

red dots indicate the formation points for Ketsana and Parma. 

Visual comparisons between Figure 38 and Figures 39 and 40 indicate 

differences between the CFS-based probabilities and the reanalysis-based 

probabilities in both magnitude and spatial distribution.  As aforementioned, this 

case was chosen, in part, because of the high probabilities found in the zero-lead 

hindcast; both formation points were predicted with probabilities on the order of 

0.1 or a 10% probability.  In contrast, the CFS-based probabilities at the 

formation points range from approximately 0.004 to 0.013.  Also, the reanalysis-

based probabilities depict favorable formation in a reverse-oriented monsoon 

trough pattern, while the CFS-based plots show a poleward extension of the 

contoured probabilities from the climatologically-favored monsoon trough region.   

One is left to wonder what accounts for the difference between the CFS-

based and reanalysis-based probabilities.  Is it a weakness of the regression 

model and/or of the CFS?  Is something unique about this case that is causing 

these differences? 
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Figure 41.   Comparison of 850 mb winds for the period 15-21 October 2003, 
from a) nine-day lead from the CFS ensemble mean and b) zero-lead R2 

data.  Note the different scales. 

 

Figure 42.   Comparison of 200 mb winds for the period 15-21 October 2003, 
from a) nine-day lead from the CFS ensemble mean and b) zero-lead R2 

data. 
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Figures 41 and 42 are comparisons of the 850 mb winds and 200 mb 

winds, respectively, from averaged CFS ensemble mean output (at a nine-day 

lead) and averaged R2 data (at zero-lead) for the same period, 15-21 October 

2003.  As discussed in the case study 1, the magnitude and distribution of the 

model probabilities are sensitive to these wind fields.  From Figures 41-42, one 

can start to hypothesize why the probabilities are different when the regression 

model is forced with CFS and with R2 LSEF values.  For example, the 850 mb 

winds (Figure 41) are similar in direction in most locations except the region 

extending from 125°E to 150°E and straddling 10°N.  These robust westerlies 

indicated by the R2 data, at zero lead, have a profound impact on the reanalysis-

based probabilities, in that they increase the vertical wind shear in that region 

and amplify low-level relative vorticity to the north.  As a result, the region 125°E 

to 150°E and straddling 10°N is no longer favorable for TC formation, and 

enhances the probability of TC formation to the immediate north of the 

westerlies.  These westerlies were not predicted by the CFS fields at a nine-day 

lead; therefore, the climatologically favored location for TC genesis is not 

displaced.  The differences in the 200 mb winds are not as profound.  Overall, it 

appears that temporally summing the bias-corrected ensemble mean fields tends 

to smooth the CFS fields such that they represent climatology.  In the absence of 

any other predictable elements, seeing the CFS tend towards climatology is 

reassuring.  This tendency is likely due in part to the bias correction we applied to 

the CFS output.   
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Figure 43.   Comparison of a) CFS-based probabilities (repeat of Fig. 39), b) 
probability difference, and c) OLR, for the period 15-21 October 2003.  

The red dots indicate the formation points for Ketsana and Parma. 

From this case study, we observe that the 15-member CFS hindcast 

ensemble mean may be too much like climatology to yield formation probabilities 

that deviate greatly from climatology.  Despite the differences between the R2 

and CFS-forecasted 850 mb winds, the probability difference plot in panel b) of 

Figure 43 highlights that the model still predicts probabilities higher than 

climatology in the region.  In addition, a visual comparison between the CFS-

based probabilities and the OLR plot for the same period, Figure 43 panels a) 

and c), suggests that this period may have been a convectively active period 

across much of the WNP, and that the CFS-based probabilities did a fair job in 

predicting this activity. 



 76

3. General Observations 

The earlier sections on the verification of the zero-lead hindcasts 

established a skillful benchmark for evaluating non-zero lead hindcasts and 

actual forecasts.  The two non-zero lead hindcast case studies presented in the 

preceding section indicate that our combined statistical-dynamical method for 

intraseasonal prediction of regions favorable for tropical cyclogenesis has the 

potential to produce useful forecasts from the existing version of the CFS.   

Some of the differences between the CFS-based probabilities and the 

reanalysis-based probabilities are likely due to the differing mechanics of the two 

systems.  Though the output we used was at 2.5° horizontal resolution for both 

systems, the effective portrayal of the assimilated observational data is different.  

The R2 assimilates data from a multitude of observational sources directly onto 

its Gaussian grid; therefore, it is conceivable that if a TC were forming or present 

over the WNP, the reanalysis data would represent the TC.  While similar data is 

included into the CFS as initial conditions, as the model is integrated forward in 

time, the coarse-resolution numerics and physics mean that the smaller scale 

features in the LSEFs associated with TCs that are forming or present will in 

general be less well represented than in the R1 or R2 fields that force the zero-

lead hindcasts.  Thus, in general, the CFS is likely to predict LSEF magnitudes 

and gradients that are weaker than those in R1 and R2. 

One should recall that dynamical models, especially GCMs, though based 

on physical laws, are unable to resolve at all spatial and temporal scales and are 

sensitive to their often-problematic parameterizations.  Nevertheless, it is 

important to remember that the CFS is not a simplified physics, coarse resolution 

atmospheric model.  Indeed, it is a fully coupled, one-tier dynamical prediction 

system.  With our proposed application, the coupling in the CFS is rather 

important.  At short lead times, a forecast is mostly affected by atmospheric initial 

conditions.  But at longer lead times, the ocean plays a greater role and can 

allow relatively high predictability in a time averaged forecasts.   
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We saw with the first case study that applying an ensemble approach to 

the operational CFS may increase the predictability by smoothing out differences 

between the members and enhancing the more predictable elements of the 

climate system.  The second case suggested that it might be possible to over 

smooth, by using the archived ensemble mean summed over seven days.  It was 

promising, however, that the CFS appears to trend towards a plausible, 

climatological state, rather than toward a model bias state.  

The first case study indicates that it may be possible to use raw output 

fields from the CFS to predict individual TC formations.  For the aforementioned 

reasons, we believe that until the single-element predictability is increased in 

dynamical models, using the raw output at daily resolutions will often lead one 

astray at intraseasonal leads.  By statistically combining several variables and 

summing temporally, the predictability is likely increased and more reflective of 

the large-scale environment that is known to impact TC development. 
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IV. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

A. KEY RESULTS AND CONCLUSIONS 

This thesis is an exploration into the viability of employing a combined 

statistical-dynamical predictive method for forecasting TC formation probabilities 

at intraseasonal time scales.  The primary focus of this work was to assess the 

feasibility of using such a method to predict favorable regions for tropical 

cyclogenesis.  We also investigated whether this combined statistical-dynamical 

approach appears to result in skill and value beyond that which basic climatology 

provides.  

Our proposed predictive method involves forcing a statistical model with 

available output from a GCM.  We began by investigating various atmospheric 

and oceanic variables in order to decide upon which LSEFs, or genesis 

parameters, to include as explanatory variables in our model.  The chosen 

statistical model, summarized in Table 1, contains terms for 850 mb relative 

vorticity, 850 mb relative vorticity squared, SST, vertical wind shear, Coriolis 

parameter, and 200 mb divergence.  Each of these variables was found to be 

necessary, both statistically and conceptually, but together may not be sufficient 

to forecast actual formation.  Multivariate logistic regression was used to develop 

a statistical model for the probability of TC formation based on the favorability of 

the large-scale environment as defined by a linear combination of these LSEFs.  

As an aside, this work with the LSEFs also suggests that the variable thresholds, 

as defined by studies during the past several decades, should be made more 

restrictive.  For example, the oft-cited criterion that SST in the WNP must be ≥ 

26.5°C for TC formation may be increased to ≥ 28°C (as suggested by Figure 9). 

The predictive potential of our method was first assessed by thorough 

quantitative and qualitative verification of reanalysis-based, zero-lead hindcasts.  

The model shows great potential, with a BSS of 0.0291 (0.0282…0.0299), a 

ROCSS of 0.683, reliable summed seven-day probabilities, and potential added 
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value for risk adverse customers.  In addition, the zero-lead hindcasts performed 

well in dealing with climate oscillations, in developing conditional climatologies, in 

verification against deep convection, and even in quantitative verification in the 

Atlantic basin. 

The second assessment of the predictive potential of this technique came 

by way of by two CFS case studies, where we generated non-zero lead 

hindcasts for past TCs.  The availability and format of CFS data confined much of 

the verification of these studies to be qualitative in nature.  We explored an 

ensemble approach as a way to smooth out the spatial and temporal variability 

between members, and highlight the more predictable elements.  Both the 

ensemble approach and the combination of LSEFs together lead to expanded 

predictability of the large-scale circulations, vice the limited predictability of 

individual elements.  Results from these intraseasonal-lead case studies are 

promising, but also suggest much work remains when it comes to dynamical 

weather prediction on the intraseasonal scale.  Purely dynamical intraseasonal 

forecasts are not overly skillful (van den Dool 2007), so our statistical-dynamical 

method appears to be a useful complement to existing alternatives for 

intraseasonal forecasting of TC formations. 

Overall, our method provides a stable, reliable, and repeatable approach 

to intraseasonal TC formation prediction that is applicable throughout the year 

and, apparently, in more than just the WNP basin.  Our method allows 

forecasters to objectively and quantitatively merge information about all the 

LSEFs to produce an ensemble based, probabilistic forecast of the potential for 

TC formation and the favorability of the climate system compared to long term 

mean climatological probabilities.  A single contoured plot, spanning a seven-day 

period is easy to interpret and may even be presented directly to users.  A typical 

rule of thumb in forecasting is to use a numerical model only when you have 

confidence in its output.  While we agree with that mantra, we are intrigued by 

the suggestion that the bias-corrected CFS fields tend toward climatology when 

the predictability in the climate system is low.  If such is the case, this method 
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could be employed regularly and would, at the very least, depict a probabilistic 

representation of TC formation climatology.   

The concept of climatology appears throughout this thesis, both as the 

reference forecast against which the proposed technique was judged and as a 

potential tool in itself.  Not all climatologies are created equal, however.  See 

Appendix A for a brief discussion on the variations of climatology used in this 

work.  In this thesis, the choice of climatology impacts the verification results.   

Plots of the difference in the probabilities generated by our method and 

those from climatology provide an intriguing presentation of the skill and value of 

our method.  Such plots can be viewed as probability anomalies and clearly 

reveal where our method predicts higher and lower likelihood of formation than 

climatology.  Operationally, a forecast for no (or less-likely) activity may be just 

as beneficial as a forecast for highly-probable formation.  For example, an 

extended area of probabilities lower than climatology may suggest safer passage 

for a carrier strike group wishing to transit the region. 

Using the data and methods outlined in Chapter II, we believe that the 

model, as described and verified in Chapter III, presents a viable approach to 

intraseasonal prediction of tropical cyclogenesis.  The numerous preceding 

pages were presented not as a testament to amount of code written or number of 

variations tested in this research, but rather as an explanation and validation of 

this combined statistical-dynamical approach in intraseasonal TC prediction. 

B. APPLICABILITY TO DOD OPERATIONS 

O’Lenic et al. (2007), in discussing recent developments in operational 

long-range climate prediction at CPC, state “improvements in the science and 

production methods of LRFs [long-range forecasts] are increasingly being driven 

by users, who are finding an increasing number of applications, and demanding 

improved access to forecast information.”  While this is encouraging and may be 

true in the civilian sector, we are of the opinion that the preponderance of DoD 

customers do not know of what Air Force Weather (AFW) and Navy METOC 
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communities are truly capable.  As the products and procedures of these two 

communities are driven by requirements, if customers do not require a product, it 

will likely go uninvestigated.   

The majority of day-to-day military scheduling and planning is focused on 

operations and exercises that will occur weeks or months later.  Translating the 

weeks to months of lead times of the planning realm into meteorological terms, 

we draw a parallel between the time scale of military planning and intraseasonal 

forecasts.  In contrast, the preponderance of weather support provided by the 

AFW and Navy METOC communities is focused on short-range forecasting (lead 

times of 72 hours or less) or nowcasting (lead times less than three hours).  This 

indicates that weather support is out of synch with the majority of the planning 

done by its military customers.   

Arguably, the planning phase is when weather support may have the 

greatest positive impact on military operations, by alerting planners to the 

potential conditions that may impact their operations, while the planners still have 

time to mitigate the impacts of some environmental conditions and exploit the 

opportunities provided by other environmental conditions.  For planners of many 

military operations, short-range forecasts come too late in the process to have 

much influence on the planning.  In many of these cases, skillful long-range 

forecasts (e.g., lead times of two week or longer) could be very useful in 

determining where and when to conduct an operation, what assets and tactics to 

employ, etc. (personal communication CDR Van Gurley 2005; CDR Tony Miller 

2009).  

Due to a lack of freely available forecast products at the intraseasonal 

scale, even an accessible, understandable depiction of climatology or of a 

conditional climatology has potential value for military planners.  The DoD lacks 

many such a products.  Previous theses (e.g., Tournay 2008; Moss 2007) and 

sections from this report highlight the power of state-of-the-science climatology, 

or “smart” climatology.  Creating state-of-the-science climatologies—using the 
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latest data sets, knowledge of climate oscillations, etc.—offers a significant 

improvement in environmental intelligence for DoD planners.   

Active intraseasonal prediction has the potential to add value beyond 

climatology.  By exploiting the predictability within the climate system, via 

statistical, dynamical, or combined methods, skillful weather information may be 

provided to military planners and operators.  It is important for military centers to 

undertake such prediction in addition to civilian centers, as the military is often 

focused on regions and variables not covered by civilian products.  For example, 

civilian forecasting centers generally focus on TC landfall locations or the number 

of TCs in a season.  While TC landfall and seasonal counts are important, for the 

military, information at much greater temporal and spatial resolution, and over the 

open ocean, would likely prove beneficial.  For example, Navy and Air Force 

planners would benefit from insight into periods and regions safe for ship and 

aviation operations.  The technique proposed in this thesis has other benefits as 

well.  Among these benefits is that an operational version of this process could 

be a fully-automated process that could be delivered to forecasters and 

customers in multiple formats, to include those via geographic information 

systems. 

As evidenced by the demands placed on civilian forecast centers from 

customers, one is led to conclude that if DoD planners and operators saw the 

potential value-added from heeding long-range weather intelligence, they too 

would demand more of it.  Products stemming from intraseasonal predictions 

need not be starkly different from short-term forecasts to which customers are 

accustomed.  For example, the ship avoidance chart from JTWC (as in Figure 

44) is routinely presented to operators for decision-making.  Potential 

deliverables from the method proposed in this thesis could be very similar to 

such ship avoidance charts.  In fact, the similarity of products would aid in 

fostering seamless weather support for planning to mission execution from the 

users’ perspectives. 



 84

 

Figure 44.   Example JTWC ship avoidance chart (From 
http://metocph.nmci.navy.mil/jtwc/legend/ship_key.html; accessed 27 

February 2009). 

Whether the mission is a trans-oceanic air bridge, carrier strike group flight 

qualification training, or a major multi-national naval exercise, no current DoD 

products exist, beyond antiquated climatology products, to aid mission planners 

is assessing the likely state of climate system weeks to months in advance.  The 

method proposed in this thesis, and others like it, could add value for numerous 

customers, and certainly has the potential for saving units’ time and tax dollars.  

This thesis represents a test of this concept.  We propose that this and similar 

products be presented to customers to see what applications and demands 

emerge throughout the DoD. 
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C. AREAS FOR FURTHER RESEARCH 

The previous sections have shown that this approach demonstrates 

intriguing potential, and that ample room remains for further research and 

exploration.   

1. Technique Exploration 

As this was a proof of concept for the technique, further exploration into 

the mechanics of the approach seems prudent.  The order of the following ideas 

for future research does not represent priority. 

1) Vary the regression model based on end strength and/or growth 

rate of the included storms.  Preliminary work confirms the common thought that 

not all TCs form and behave in the same manner.  The method used in this 

thesis was founded on the idea that compositing numerous storms smooths out 

the differences and enhances the features in common.  However, could one 

construct a more skillful model if end strength and/or growth rate were taken into 

consideration? 

2) As mentioned in Section III.B.8, some of the apparent shortcomings 

of this model deal with the post-formation environment.  We were able to mitigate 

these shortcomings by adjusting the NTCI, filtering out data according to MSLP 

from the model construction process, and including the relative vorticity squared 

term.  In order to better highlight the conditions at formation, one should 

uniformly define the formation day in the best track archive and consider 

constructing a regression model excluding data surrounding the track post-

formation. 

3) Future research should investigate further the best method for 

including NTCI in the development of the regression model.  This research 

should attempt to answer questions such as:  To what extent should NTCI from 

regions or periods in which TCs have never formed be used to train the model?  

Should all NTCI come just from locations and months in which TCs have been 

observed to occur? 
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4) From the available reanalyses and CFS fields, we calculated 

several of our LSEFs using second order centered finite differencing (see 

Appendix B).  One may consider using a more advanced method to calculate 

variables, such as Legendre polynomials for meridional differentiation and 

Fourier analysis for zonal spatial differentiation. 

5) As we observed with the CFS case study, a delicate balance 

appears to exist between predictability and resolution (as in the model’s 

difference from climatology).  The construct of the current operational CFS allows 

one to readily create a four-member ensemble.  While keeping the balance issue 

in mind, one may explore the idea of creating an expanded ensemble by using 

runs initialized on multiple days.  Such an approach would more closely resemble 

the approach CPC takes in using the CFS in seasonal forecasting. 

6) A struggle throughout this thesis process concerned the issue of 

how best to verify the propensity for TC formation.  Other centers with similar 

spatial forecasts of rare events seem to struggle as well, and no industry 

standard exists for the verification of such products.  The approach we took uses 

an assemblage of tools, most of which inevitably verify the propensity for 

formation against actual formations.  The issue of verification needs to be 

explored further.  Could we numerically score against OLR or some other 

variable that represents favorable LSEFs? 

7) While numerous combinations of possible LSEFs were tested for 

inclusion into the regression equation in this research, additional work could be 

accomplished in this area.  Ideal candidates are oceanic variables, such as 

mixed layer depth.  In addition, one may consider additional non-linear 

relationships between variables and TC formation or between separate variables.  

For example, we experienced an improvement in our model’s performance by the 

addition of the vorticity-squared term. 

8) Prior work by Meyer (2007) and others indicate that the same 

LSEFs that influence formation may also influence the intensity of a TC.  
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Subsequent research may investigate the potential for generating near-term 

estimates for the intensity of a storm that has formed, or may soon form, based 

on the predicted conditions of the large-scale environment. 

2. Data Exploitation 

As mentioned in Section II.B. regarding the importance of the reanalysis 

data sets, the logistic regression approach we employed would not have been 

possible if the atmospheric and SST reanalysis datasets were not available.  

Similarly, this approach would not have been viable without the existence of the 

CFS data set, including an extensive hindcast archive.  Current and forthcoming 

data sources offer potential avenues through which to improve the combined 

statistical-dynamical method proposed in this thesis. 

1) As noted throughout this thesis, the model was trained on 

reanalysis data and applied in proof-of-concept testing using CFS data.  Though 

it would require a substantial storage and coding investment initially, one should 

consider using the CFS to both train and test such a model.  In addition to 

accounting for the subtle biases and nuances within the model, this approach 

would allow for the testing of more variables—especially oceanic variables—

thought to impact TC formation.  It was not so much the storage or coding that 

pushed us away from this approach for this thesis, but rather the limited days for 

which hindcast data is available.  Would enough storms be captured by a purely-

CFS approach to successfully train and test a regression model?  In addition, we 

felt it was important to first use reanalysis values of the LSEFs in building the 

regression model, so that a relatively skillful benchmark based on zero-lead 

hindcasting could be established.  But future studies could consider building a 

regression model based solely on forecasted LSEFs.   

2) Short of using the CFS data, one may consider employing an 

ocean reanalysis, or the forthcoming coupled reanalysis from NCEP, to 

investigate the use of oceanic LSEFs other than SST.  We hypothesize that a 

term representing mixed layer depth may be a more skillful predictor than SST.  
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In addition, such oceanic variables are known to better represent  long term 

climate system  memory.  Thus, the use of better or additional oceanic LSEFs  

than SST could provide a better match between the model’s terms and the 

climate system variables that best represent intraseasonal predictability. 

3) Low skill in CFS intraseasonal predictions of atmospheric variables 

is likely a weak point for our technique.  While there is no reason to believe that 

the current CFS is inferior at such leads compared to other GCMs, one may find 

it worthwhile to explore other GCMs, such as those from the Goddard Space 

Flight Center or Australian Bureau of Meteorology.  Though more 

computationally demanding, the most intriguing approach may be to employ a 

multi-model ensemble approach to generate the necessary LSEF fields.   

4) Future plans for the CFS include an operational T126 version.  

Though we feel that LSEFs must occur over an adequate spatial and temporal 

scale to affect TC formation, a higher resolution model may generate higher 

magnitudes and gradients, and more skillful predictions of the LSEFs.  

Experimental runs by CPC of a high-resolution T254 and T382 CFS have shown 

that it has the potential to predict individual TCs and may have skill in 

characterizing overall TC activity (Schemm et al. 2008).  Undeniably, a 

comparison between a high-resolution CFS, or comparable system (e.g., from 

ECMWF), and a lower-resolution combined approach as proposed in this thesis 

would be worthwhile. 



 89

APPENDIX A. VARIATIONS OF CLIMATOLOGY 

Climatology is used throughout this thesis as a baseline against which we 

compare our statistical-dynamical prediction method.  Not all climatologies are 

created equal, however.  The following paragraphs highlight the forms of 

climatology applied in or mentioned in this work, all of which are legitimate, but 

distinct, forms of climatology. 

The most basic form of climatology is sample climatology.  As used in this 

thesis, the sample climatology is the average rate of occurrence based on the 

verification dataset.  For example if a TC hit is observed 10 times out of 1,000 

possible day grid points, the sample climatology would be 10/1,000 or 0.01.  This 

form of climatology is used in quantitative verification such as the BSS. 

We also use various forms of raw climatology based on the JTWC best 

track data.  Figure 6 in Chapter II is an example plot of raw climatology.  This 

plotted data was created by treating each of the 2.5° x 2.5° grid blocks in the 

WNP as individual bins.  Looping through a set period of time (e.g., 1970 to 

2007), we counted the number of formations that occur in each bin, then divided 

the number in each bin by the length of time for the given time interval.  Based on 

the time interval one chooses, the output values vary numerically—as daily, 

weekly, monthly, etc. probabilities—but the spatial distribution does not.  A 

shortcoming of this raw spatial climatology is its lack of day-to-day variation, in 

that the magnitude and distribution of daily probabilities for 27 March are the 

same as 26 August, which we know is not typically the case in the real climate 

system.  

A more robust version of climatology, still based on the JTWC data, is one 

that varies in magnitude throughout the year.  This form of climatology was 

created by taking a 28-day, Loess-smoothed form of the daily observed TC 

formations for the WNP, dividing by the number of days in the period to give us a 

daily probability that a TC will form somewhere in the WNP on a given day.  
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These daily probabilities were multiplied by a normalized spatial distribution of 

the likelihood of TC formation in the WNP.  The result is a climatology that 

displays an annual cycle and spatial variation in the output probabilities.  This is 

the form of climatology used in creating the difference plots depicted in Chapter 

III of this work. 

Figure 45 is an example of the components involved in generating such a 

form of climatology: a) a smoothed version of daily formation counts, b) a 

normalized distribution of spatial climatology, and c) an example of the resulting 

daily probabilities for 1 August.  This form of climatology vaguely resembles the 

approach taken by Leroy and Wheeler (2008), who generated a climatological 

seasonal cycle based on raw probabilities smoothed through harmonic analysis. 
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Figure 45.   Components used to create a more robust climatology against 
which to compare our method; a) a smoothed form of daily formation 
counts, b) a normalized distribution of spatial climatology, and c) an 

example of the resulting daily climatology for 1 August. 

These preceding forms of climatology are all based on the observational 

JTWC best track data.  An approach to generating a pseudo-climatology is 

mentioned in Section III.B.5.  Rather than generating probabilities based on the 

number of TCs observed for a given spatial and temporal scale, this approach 

uses the regression model outlined in Table 1 to generate a probability of TC at 
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every grid point based on LTM LSEFs.  A notable benefit of this approach is that 

it is not sensitive to the number of TC formations.  For example, if one wants to 

create climatology for the probability of TC formation for a forthcoming exercise 

in the month of May, a method relaying on raw JTWC data would depict patchy 

probabilities due to the limited number of storms (e.g., 53 in the month of May for 

the years 1970 to 2006).  The spottiness of the output would not accurately 

reflect the large-scale environment, but rather roughly contour the individual 

storm formation points.  In contrast, the LTM LSEFs (from one of the NCEP 

reanalyses) when processed by our regression model would result in a depiction 

of climatology much more indicative of the favorability of the typical climate 

system in the month of May. 

As noted, each of the preceding forms of climatology is a different, but 

legitimate, approach to representing climatology.  Climatology is both a useful 

tool and a baseline reference forecast.  In a situation where no pronounced 

predictable elements appear in the climate system, a state-of-the-science 

climatology may be the best intraseasonal/seasonal outlook one has to offer. 
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APPENDIX B. CALCULATION OF VARIABLES 

As only a limited number of variables are available at daily timesteps from 

the CFS, we had to calculate additional variables based on available model 

output fields.  In this work, we employed second order centered finite differencing 

for variables requiring spatial derivatives. 

For example, a variable directly representing vertical motion is not readily 

available from the CFS.  We surmise that some degree of uplift would exist 

(especially in and around the monsoon trough) if low-level convergence and/or 

upper-level divergence exist.  As such, we opted to—among other variables—

derive 200 mb divergence based on available 200 mb zonal and meridional wind 

fields. 

Take equation 2.21 from Carlson (1998), where horizontal divergence on a 

fixed pressure level is given by: 

 p
p

u vV
x y

⎛ ⎞∂ ∂
∇ • = +⎜ ⎟∂ ∂⎝ ⎠

 

Holding the area constant, to represent the fixed model grid spacing, the 

horizontal divergence in second order centered finite difference form of 

divergence at 200 mb ( 200D ) becomes: 

 1 1 1 1
200

200
2 2

j j i iU U V V
D

x y
+ − + −
−⎛ ⎞−

= +⎜ ⎟Δ Δ⎝ ⎠
 

Where 200D is the horizontal divergence at 200 mb, U  is the zonal wind, V  

is the meridional wind, xΔ  is the  zonal (east-west) grid spacing, and yΔ  is the 

meridional (north-south) grid spacing.  Also, j  and i  are the longitudinal and 

latitudinal indexes, respectively.  

Then converting the above equation into MATLAB syntax, the equation for 

200 mb divergence for an array of size (41,144,365) becomes: 
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for i = 2:40  
    for j = 2:143 
        for k = 1:365 
 dy = 111319.49*2.5;    % Spacing in meters, based on WGS-84 

dx(i) = cosd(i)*111319.49*2.5; 
dudx(i,j,k) = (U_200(i,j+1,k) - U_200(i,j-1,k))/(2*dx(i)); 
dvdy(i,j,k) = (V_200(i-1,j,k) - V_200(i+1,j,k))/(2*dy); 

        end 
    end 
end 
 
DIV_200 = dudx+dvdy;            % Divergence at 200mb; s-1  
 
Note that MATLAB indexes top to bottom, thus requiring an opposite 

convention on the latitudinal index.  Also, U_200 and V_200 are predefined 

variables representing three-dimensional arrays of the 200mb zonal and 

meridional winds, respectively. 

With this spatial finite differencing, we could just as easily used fourth 

order finite differencing methods.  With the model output variables from which 

such additional variables are calculated being at 2.5° horizontal resolution, we 

felt that fourth order methods would overly smooth the gradients.  Figure 46 is a 

comparison of second order versus fourth order finite differencing for 200 mb 

divergence for a sample day in 1991.  
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Figure 46.   Comparison of a) second order finite differencing and b) fourth 
order finite differencing for 200 mb divergence on 8 August 1991, 

constructed from R2 wind fields.  Panel c) is the difference between a) and 
b).  Note the different scales between the divergence and difference plots. 

As noted in Section IV.C.1.3)., the calculation of additional variables from 

the available model output fields is an area open to further research.  While the 

second order centered finite differencing allows us to readily calculate several 

variables that are based on spatial derivatives, the five-degree “reach” about 

each grid point does result in some gradient loss versus what we might get if 

such variables were directly predicted by the CFS. 
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APPENDIX C. ADDITIONAL CASE STUDIES 

Operational CFS Cases 

As an additional resource for the reader, this section includes additional 

plots for storms that occurred in the WNP during the fall of 2008.  The probability 

plots that follow are based on the operational CFS, and thus are generated from 

the four-member ensemble.  The construct of these cases mirrors Case 1 in 

Section III.D.1. 

The genesis of Jangmi (19W) may be traced back to 24 September 2008.  

Due to the limited availability of daily operational CFS fields, the lead time for this 

case is limited to a four-day lead.  Figure 47 depicts the seven-day summed 

probabilities at a four-day lead and a comparison composite OLR plot for the day 

seven-day period. 

 

Figure 47.   Comparison of a) CFS-based TC formation probabilities from the 
ensemble mean at a 4-day lead and b) OLR for the period of 21-27 

September 2008.  The formation point and storm track is marked by the 
green dot and magenta circles, respectively.  
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Maysak (24W) was a weak storm whose origins may be traced back to 5 

November 2008.  Figure 48 depicts the seven-day summed probabilities at a 

two-week lead, at a three-week lead, and a comparison composite OLR plot for 

the day seven-day period. 

 

Figure 48.   Comparison of a) CFS-based TC formation probabilities from the 
ensemble mean at a 2-week lead, b) at a 3-week lead, and c) OLR for the 

period of 2-8 November 2008  The formation point and storm track is 
marked by the green dot and magenta circles, respectively. 

As a late season storm with unusual formation dynamics, Dolphin (27W) 

makes an interesting case study.  JTWC notes the beginnings of Dolphin as early 

as 8 December 2008.  Figure 49 displays the seven-day summed probabilities at 
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a two-week lead, at a three-week lead, and a comparison composite OLR plot for 

the day seven-day period about which the probability plots are centered. 

 

Figure 49.   Comparison of a) CFS-based TC formation probabilities from the 
ensemble mean at a 2-week lead, b) at a 3-week lead, and c) OLR for the 

period of 5-11 December 2008  The formation point and storm track is 
marked by the green dot and magenta circles, respectively. 

Hindcast CFS Cases 

In contrast to the above cases that were based on daily, operational CFS 

output, the cases in this section are based on archived hindcast CFS data.  

Though archived data is used, the lead times are still true-to-form, thus the 
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probability plots are contours of probabilities based on forecast variable fields.  

The data used for generating these case studies mirrors the 15-member 

ensemble mean data used for Case 2 in Section III.D.2. 

Jelawat (13W) formed on 31 July 2000, in a location well removed from 

the climatologically favored formation regions.  Figure 50 provides a visual 

comparison between the CFS-based probabilities and OLR over the same 

seven-day period. 

 

Figure 50.   Comparison of a) CFS-based TC formation probabilities from the 
ensemble mean at a 22-day lead and b) OLR for the period of 28 July - 3 

August 2000.  The formation point for Jelawat is highlighted by the 
magenta dot. 

JTWC lists the formation day for Krosa (24W) as 3 October  2001.  Figure 

51 offers a visual comparison between the seven-day summed CFS-based 

probabilities centered on 3 October 2001, based on the 15-member ensemble 

mean, and OLR over the same seven-day period. 
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Figure 51.   Comparison of a) CFS-based TC formation probabilities from the 
ensemble mean at a 24-day lead and b) OLR for the period of 30 

September - 6 October 2001.  The formation point for Krosa is marked by 
the magenta dot. 

As a final case study, Mindulle (10W) formed on 21 September 2004.  The 

panels in Figure 52 represent a) the CFS-based probabilities from a 12-day lead, 

b) the CFS-based probabilities from a 43-day lead, and c) the NOAA interpolated 

OLR image from the same period.  The OLR images displayed in this appendix 

and throughout this thesis are courtesy of the Physical Sciences Division, Earth 

System Research Laboratory, NOAA, Boulder, Colorado, from their Web site at 

http://www.esrl.noaa.gov/psd/. 
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Figure 52.   Comparison of a) CFS-based TC formation probabilities from the 
ensemble mean at a 12-day lead, b) a 43-day lead, and c) OLR for the 

period of 18-24 June 2004.  The formation point for Mindulle is marked by 
the magenta dot. 
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